
Lecture 18
what we’ve done and what’s to come

1

Announcements

• HW8 (last one) due today

• Don’t forget about the final exam on March 17
(from 3:30pm – 6:30pm).

2

Today

• What just happened?
• A whirlwind tour of CS161

• What’s next?
• A few gems from future algorithms classes

3

It’s been a fun ride…

4

What have we learned?
17 lectures in 12 slides.

5

General approach
to algorithm design and analysis

Can I do better?

Plucky the
Pedantic Penguin

Lucky the
Lackadaisical Lemur

Algorithm designer
Detail-oriented

Precise
Rigorous

Big-picture
Intuitive

Hand-wavey

To answer this question we need
both rigor and intuition:

6

We needed more details

Here is an

input!

Worst-case analysis big-Oh notation

𝑇 𝑛 = 𝑂 𝑓 𝑛

⟺
∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑓(𝑛)

Does it work?
Is it fast?

What
does that
mean??

7

Algorithm design paradigm:

divide and conquer
• Like MergeSort!

• Or Karatsuba’s algorithm!

• Or SELECT!

• How do we analyze these?

Big
problem

Smaller
problem

Smaller
problem

Yet
smaller
problem

Yet
smaller

problem

Yet
smaller

problem

Yet
smaller

problem

By careful
analysis!

Useful shortcut, the
master method is.

Jedi master Yoda
Plucky the

Pedantic Penguin
8

While we’re on the topic of sorting

Why not use randomness?

• We analyzed QuickSort!

• Still worst-case input, but we use randomness after
the input is chosen.

• Always correct, usually fast.
• This is a Las Vegas algorithm

9

All this sorting is making me wonder…

Can we do better?
• Depends on who you ask:

• RadixSort takes time O(n) if
the objects are, for
example, small integers!

• Can’t do better in a
comparison-based model.

≤
10

beyond sorted arrays/linked lists:

Binary Search Trees!

• Useful data structure!

• Especially the self-balancing ones!

42 8

73

5

6
Maintain balance by stipulating that

black nodes are balanced, and

that there aren’t too many red

nodes.

It’s just good sense!
11

Another way to store things

Hash tables!

Some buckets

hash function h

Choose h randomly from a
universal hash family.

It’s better if the hash
family is small!
Then it takes less
space to store h. 12

OMG GRAPHS

• BFS, DFS, and applications!

• SCCs, Topological sorting, …

13

A fundamental graph problem:

shortest paths

• E.g., transit planning,
packet routing, …

• Dijkstra!

• Bellman-Ford!

• Floyd-Warshall!

14

• Not programming in an action movie.

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation
for the value of the optimal solution.

• Steps 3-5: Use dynamic programming:
fill in a table to find the answer!

Bellman-Ford and Floyd-Warshall

were examples of… Dynamic

Programming!

Big
problem

sub
problem

sub
problem

sub
problem

sub
sub

prob

sub
sub

prob

sub
sub

prob

sub
sub

prob

sub
problem

We saw many other
examples, including Longest
Common Subsequence and

Knapsack Problems.

Instead, an
algorithmic
paradigm!

15

Sometimes we can take even better advantage of
optimal substructure…with

Greedy algorithms
• Make a series of choices, and commit!

• Intuitively we want to show that our greedy choices never
rule out success.

• Rigorously, we usually analyzed these by induction.

• Examples!
• Activity Selection

• Job Scheduling

• Huffman Coding

• Minimum Spanning Trees

16

• Minimum s-t cut:
• is the same as maximum s-t flow!

• Ford-Fulkerson can find them!
• useful for routing

• also assignment problems

Cuts and flows

ts

4

2

6

3

6

3

3

4

3

1

3

43

4

5

5

1

2

10

4

4

4

2

2

6

6

17

Stable matching

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

Deferred acceptance: a different kind of greedy
algorithm, this time with recourse. 18

How to convince actors to use our matching?
Where do preferences come from?

Are the incentives set correctly?

And now we’re here

19

What have we learned?
• A few algorithm design paradigms:

• Divide and conquer, dynamic programming, greedy

• A few analysis tools:
• Worst-case analysis, asymptotic analysis, recurrence

relations, probability tricks, proofs by induction

• A few common objects:
• Graphs, arrays, trees, hash functions

• A LOT of examples!

20

What have we learned?

We’ve filled out a toolbox

• Tons of examples give us intuition about what
algorithmic techniques might work when.

• The technical skills make sure our intuition works out.

21

But there’s lots more out there

• What’s next???
22

A taste of what’s to come
• CS154 – Introduction to Automata and Complexity

• CS163 – The Practice of Theory Research

• CS166 – Data Structures

• CS168 – The Modern Algorithmic Toolbox

• MS&E 212 – Combinatorial Optimization

• CS250 – Error Correcting Codes

• CS252 – Analysis of Boolean Functions

• CS254 – Computational Complexity

• CS255 – Introduction to Cryptography

• CS259Q – Quantum Computing

• CS260 – Geometry of Polynomials in Algorithm Design

• CS261 – Optimization and Algorithmic Paradigms

• CS263 – Counting and Sampling

• CS265 – Randomized Algorithms

• CS269O – Introduction to Optimization Theory

• MS&E 316 – Discrete Mathematics and Algorithms

• CS352 – Pseudorandomness

• CS366 – Computational Social Choice

• CS368 – Algorithmic Techniques for Big Data

• EE364A/B – Convex Optimization I and II

...and many many more!

findSomeTheoryCourses():
• go to theory.stanford.edu
• Click on “People”
• Look at what we’re teaching!

23

Today

A few gems

• Linear programming

• Random projections

• Low-degree polynomials

This will be fluffy,
without much detail –

take more CS theory
classes for more detail!

24

Linear Programming

• This is a fancy name for optimizing a linear function
subject to linear constraints.

• For example:

• It turns out the be an extremely general problem.

Maximize
 𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

 4𝑥 + 𝑦 ≤ 2
 𝑥 + 2𝑦 ≤ 1

subject to

25

We’ve already seen an example!

Maximize

the sum of the
flows leaving s

ts

4

2

6

3

6

3

3

4

3

1

3

43

4
5

5

1

2

10

4

4

4
2

2

6

6

subject to

• None of the flows
are bigger than the
edge capacities

• At every vertex,
stuff going in =
stuff going out.

26

Linear Programming

Has a really nice geometric intuition

Maximize
 𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

𝑥 ≥ 0

𝑦 ≥ 0

28

Linear Programming

Has a really nice geometric intuition

Maximize
 𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

𝑥 ≥ 0

𝑦 ≥ 0

29

Linear Programming

Has a really nice geometric intuition

Maximize
 𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

𝒙 + 𝒚 is
increasing in
this direction.

The function
is maximized

here!

30

In general

• The constraints define a polytope

• The function defines a direction

• We just want to find the vertex that is furthest in
that direction.

The function
is maximized

here!

31

Duality
How do we know we have an optimal solution?

Maximize
 𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

I claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

• 𝒙 + 𝒚 =
𝟏

𝟕
𝟒𝒙 + 𝒚 +

𝟑

𝟕
𝒙 + 𝟐𝒚

• ≤
𝟏

𝟕
⋅ 𝟐 +

𝟑

𝟕
⋅ 𝟏

• =
𝟓

𝟕

You can check this point
has value 5/7...but how
would we prove it’s
optimal other than by
eyeballing it?

32

cute, but

How did you come up with 1/7, 3/7?

Maximize
 𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

I claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

• 𝒙 + 𝒚 ≤
𝟏

𝟕
𝟒𝒙 + 𝒚 +

𝟑

𝟕
𝒙 + 𝟐𝒚

• ≤
𝟏

𝟕
⋅ 𝟐 +

𝟑

𝟕
⋅ 𝟏

• =
𝟓

𝟕

• I want to choose things to put here
• So that I minimize this
• Subject to these things

33

That’s a linear program!

• How did I find those special values 1/7, 3/7?

• I solved some linear program.

• It’s called the dual program.

Minimize the upper bound you get,
subject to the proof working.

Primal

Maximize stuff
subject to stuff

Dual

Minimize other stuff
subject to other stuff

The optimal values are
the same!

Note: it’s not immediately obvious how to
turn that into a linear program, this is just
meant to convince you that it’s plausible.

In this case the dual is:
min 2𝑤 + 𝑧 s.t. 𝑤, 𝑧 ≥ 0,

4𝑤 + 𝑧 ≥ 1 and 𝑤 + 2𝑧 ≥ 1

34

We’ve actually already seen this too

The Min-Cut Max-Flow Theorem!

Primal

Maximize the
sum of the

flows leaving s
s.t

All the flow
constraints are

satisfied

Dual

Minimize the sum
of the capacities

on a cut
s.t.

it’s a legit cut

The optimal values are
the same!

ts

4

2

6

3

6

3

3

4

3

1

3

43

4
5

5

1

2

10

4

4

4
2

2

6

6

35

LPs and Duality are really powerful

• This general phenomenon shows up all over the place
• Min-Cut Max-Flow is a special case.

• Duality helps us reason about an optimization problem
• The dual provides a certificate that we’ve solved the primal.

• E.g., if you have a cut and a flow with the same value, you
must have found a max flow and a min cut.

• We can solve LPs quickly!
• For example, by intelligently bouncing around the vertices of

the feasible region.

• This is an extremely powerful algorithmic primitive.

36

Today

A few gems

• Linear programming

• Random projections

• Low-degree polynomials

37

A very useful trick
Take a random projection and hope for the best.

High-dimensional
set of points

For example, each data
point is a vector
(age, height, shoe size, …)

38

Why would we do this?

• High dimensional data takes a long time to process.

• Low dimensional data can be processed quickly.

• “THEOREM”: Random projections approximately
preserve properties of data that you care about.

39

Example: nearest neighbors
• I want to find which point is closest to this one.

That takes a really long
time in high dimensions.

Johnson-Lindenstrauss Lemma:
Euclidean distance is

approximately preserved by
random projections.

Find the closest point
down here, you’re

probably pretty
correct.

40

Another example:

Compressed Sensing

• Start with a sparse vector
• Mostly zero or close to zero

• For example:

(5 , 0 , 0 , 0 ,0 , 0.01 , 0.01 , 5.8 , 32 , 14 , 0 , 0 , 0 , 12 , 0 , 0 , 5 , 0 , .03)

This image is sparse This image is sparse after I
take a wavelet transform. 41

Compressed sensing continued

• Take a random projection of that sparse vector:

Random short fat matrix

Long sparse
vector

Short vector

=

Goal: Given the short
vector, recover the
long sparse vector.

42

Why would I want to do that?
• Image compression and signal processing

• Especially when you never have space to store the
whole sparse vector to begin with.

Randomly sampling (in the time
domain) a signal that is sparse in
the Fourier domain.

Random measurements in
an fMRI means you spend

less time inside an fMRI

A “single pixel
camera” is a
thing.

43

All examples of this:

Random short fat matrix

Long sparse
vector

Short vector

=

Goal: Given the short
vector, recover the
long sparse vector.

44

But why should this be possible?

• There are tons of long vectors that map to the
short vector!

Random short fat matrix

Long sparse
vector

Short vector

=

45

Goal: Given the short
vector, recover the
long sparse vector.

Back to the geometry

Theorem:

random projections preserve the
geometry of sparse vectors too.

All of the
sparse
vectors

(Infinitely
many of them)

46

If we don’t care about algorithms,

that’s more than enough.
All of the

sparse
vectors

Random short
fat matrix

Multiply by

This means that, in theory,
we can invert that arrow.

How do we do this efficiently??

There may be tons of vectors
that map to this point, but only
one of them is sparse!

47

An efficient algorithm?

Random short
fat matrix A

Long
sparse
vector

Short
vector y

=

Goal: Given the short vector,
recover the long sparse vector.

Minimize 𝑥 1

𝐴𝑥 = 𝑦

s.t.

This norm is the sum
of the absolute values

of the entries of x

• It turns out that because the geometry of sparse vectors is
preserved, this optimization problem gives the same answer.

• We can use linear programming to solve this quickly!

What we’d like to do is:

Minimize number of
nonzero entries in x

s.t.

Problem: I don’t know
how to do that efficiently!

This isn’t a
nice function

𝐴𝑥 = 𝑦
Instead:

48

Today

A few gems

• Linear programming

• Random projections

• Low-degree polynomials

49

Another very useful trick

Polynomial interpolation

• Say we have a few evaluation points of a low-degree
polynomial.

• We can recover the polynomial.
• 2 pts determine a line, 3 pts determine a parabola, etc.

• We can recover the whole polynomial really fast.

• Even works if some of the points are wrong.

f(x)

50

One application:

Communication and Storage

Alice Bob

“Hi, Bob!”

𝑓 𝑥 = 𝑯 + 𝑰 ⋅ 𝑥 + 𝑩 ⋅ 𝑥2 + 𝑶 ⋅ 𝑥3 + 𝑩 ⋅ 𝑥4

f(x)

• Alice wants to send a message to Bob

Noisy channel

Bob can do super-fast
polynomial interpolation
and figure out what Alice

meant to say!
51

This is used in practice

• It’s called “Reed-Solomon Encoding”

52

Another application:

Designing “random” projections that
are better than random

Random short fat matrix =

The matrix that treats the big
long vector as Alice’s message
polynomial and evaluates it
REALLY FAST at random points.

• This is still “random enough”
to make the LP solution work.

• It is much more efficient to
manipulate and store!

53

Today

A few gems

• Linear programming

• Random projections

• Low-degree polynomials

To learn more:

CS168, CS261, …

CS168, CS261,
CS265, …

CS168, CS250, …

54

What have we learned?
CS161

Tons more cool
algorithms stuff!

55

To see more…
• Take more classes!

• Come hang out with the theory group!
• Theory lunch, most Thursdays at noon.

• Join the theory-seminar mailing list for updates.

Stanford theory group (circa 2017):
 We are very friendly.

theory.stanford.edu

56

A few final messages…

57

Thanks to our course coordinators
Amelie Byun and John Cho!
• They have been making all the

logistics work behind the scenes.

58

Thanks to Dan Webber!

• Dan has been helping integrate
EthiCS components into the course.

59

Thanks to our superstar CAs!!!
tell them you appreciate them!

60

Samantha Aidan Alex Allison Chirag

Ishaan Josh Matthew Max Ramya

Ruiquan Shreya Shreyas

THANKS
to you!!!!!!

4.

61

	Slide 1: Lecture 18
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: It’s been a fun ride…
	Slide 5: What have we learned?
	Slide 6: General approach to algorithm design and analysis
	Slide 7: We needed more details
	Slide 8: Algorithm design paradigm: divide and conquer
	Slide 9: While we’re on the topic of sorting Why not use randomness?
	Slide 10: All this sorting is making me wonder… Can we do better?
	Slide 11: beyond sorted arrays/linked lists: Binary Search Trees!
	Slide 12: Another way to store things Hash tables!
	Slide 13: OMG GRAPHS
	Slide 14: A fundamental graph problem: shortest paths
	Slide 15: Bellman-Ford and Floyd-Warshall were examples of…
	Slide 16: Sometimes we can take even better advantage of optimal substructure…with Greedy algorithms
	Slide 17: Cuts and flows
	Slide 18: Stable matching
	Slide 19: And now we’re here
	Slide 20: What have we learned?
	Slide 21: What have we learned? We’ve filled out a toolbox
	Slide 22: But there’s lots more out there
	Slide 23: A taste of what’s to come
	Slide 24: Today A few gems
	Slide 25: Linear Programming
	Slide 26: We’ve already seen an example!
	Slide 28: Linear Programming Has a really nice geometric intuition
	Slide 29: Linear Programming Has a really nice geometric intuition
	Slide 30: Linear Programming Has a really nice geometric intuition
	Slide 31: In general
	Slide 32: Duality How do we know we have an optimal solution?
	Slide 33: cute, but How did you come up with 1/7, 3/7?
	Slide 34: That’s a linear program!
	Slide 35: We’ve actually already seen this too The Min-Cut Max-Flow Theorem!
	Slide 36: LPs and Duality are really powerful
	Slide 37: Today A few gems
	Slide 38: A very useful trick Take a random projection and hope for the best.
	Slide 39: Why would we do this?
	Slide 40: Example: nearest neighbors
	Slide 41: Another example: Compressed Sensing
	Slide 42: Compressed sensing continued
	Slide 43: Why would I want to do that?
	Slide 44: All examples of this:
	Slide 45: But why should this be possible?
	Slide 46: Back to the geometry
	Slide 47: If we don’t care about algorithms, that’s more than enough.
	Slide 48: An efficient algorithm?
	Slide 49: Today A few gems
	Slide 50: Another very useful trick Polynomial interpolation
	Slide 51: One application: Communication and Storage
	Slide 52: This is used in practice
	Slide 53: Another application: Designing “random” projections that are better than random
	Slide 54: Today A few gems
	Slide 55: What have we learned?
	Slide 56: To see more…
	Slide 57: A few final messages…
	Slide 58: Thanks to our course coordinators Amelie Byun and John Cho!
	Slide 59: Thanks to Dan Webber!
	Slide 60: Thanks to our superstar CAs!!! tell them you appreciate them!
	Slide 61: THANKS to you!!!!!!

