Lecture 18

what we've done and what's to come

Announcements

- HW8 (last one) due today
- Don't forget about the final exam on March 17 (from 3:30pm – 6:30pm).

Today

• What just happened?

- What's next?
 - A few gems from future algorithms classes

It's been a fun ride...

What have we learned?

17 lectures in 12 slides.

General approach to algorithm design and analysis

Can I do better?

Algorithm designer

To answer this question we need both **rigor** and **intuition**:

Plucky the Pedantic Penguin Detail-oriented Precise Rigorous

Lucky the Lackadaisical Lemur

Big-picture Intuitive Hand-wavey

We needed more details

Worst-case analysis

big-Oh notation

HERE IS AN INPUT!

 $T(n) = O\big(f(n)\big)$ $\exists c, n_0 > 0 \ s.t. \ \forall n \ge n_0,$ $0 \le T(n) \le c \cdot f(n)$ 7

Algorithm design paradigm: divide and conquer

- Like MergeSort!
- Or Karatsuba's algorithm!
- Or SELECT!
- How do we analyze these?

By careful analysis!

Plucky the Pedantic Penguin

Useful shortcut, the **master method** is.

Jedi master Yoda

While we're on the topic of sorting Why not use randomness?

- We analyzed QuickSort!
- Still worst-case input, but we use randomness after the input is chosen.
- Always correct, usually fast.
 - This is a Las Vegas algorithm

All this sorting is making me wonder... Can we do better?

• Depends on who you ask:

 RadixSort takes time O(n) if the objects are, for example, small integers!

 Can't do better in a comparison-based model.

beyond sorted arrays/linked lists: Binary Search Trees!

- Useful data structure!
- Especially the self-balancing ones!

Red-Black tree!

Maintain balance by stipulating that **black nodes** are balanced, and that there aren't too many **red**

nodes. It's just good sense! 5

11

Another way to store things Hash tables!

All of the hash functions h:U \rightarrow {0,...,n-1}

Choose h randomly from a universal hash family.

It's better if the hash family is small! Then it takes less space to store h.

Some buckets

hash function h

The universe

OMG GRAPHS

roches

nvc/ifk

salt lake city

las vegas

sacramento oakland

san jose

Iong beach

A fundamental graph problem: shortest paths

- E.g., transit planning, packet routing, ...
- Dijkstra!
- Bellman-Ford!
- Floyd-Warshall!

DN0a22a0e3:~ mary\$ traceroute -a www.ethz.ch traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets [AS0] 10.34.160.2 (10.34.160.2) 38.168 ms 31.272 ms 28.841 ms [AS0] cwa-vrtr.sunet (10.21.196.28) 33.769 ms 28.245 ms 24.373 ms [AS32] 171.66.2.229 (171.66.2.229) 24.468 ms 20.115 ms 23.223 ms [AS32] hpr-svl-rtr-vlan8.sunet (171.64.255.235) 24.644 ms 24.962 ms 17.453 ms [AS2152] hpr-svl-hpr2--stan-ge.cenic.net (137.164.27.161) 22.129 ms 4.902 ms 3.642 ms [AS2152] hpr-lax-hpr3--svl-hpr3-100ge.cenic.net (137.164.25.73) 12.125 ms 43.361 ms 32.3 [AS2152] hpr-i2--lax-hpr2-r&e.cenic.net (137.164.26.201) 40.174 ms 38.399 ms 34.499 ms [AS0] et-4-0-0.4079.sdn-sw.lasv.net.internet2.edu (162.252.70.28) 46.573 ms 23.926 ms 17 [AS0] et-5-1-0.4079.rtsw.salt.net.internet2.edu (162.252.70.31) 30.424 ms 25.770 ms 23.1 [AS0] et-4-0-0.4079.sdn-sw.denv.net.internet2.edu (162.252.70.8) 47.454 ms 57.273 ms 73 [AS0] et-4-1-0.4079.rtsw.kans.net.internet2.edu (162.252.70.11) 70.825 ms 67.809 ms 62.1 [AS0] et-4-1-0.4070.rtsw.chic.net.internet2.edu (198.71.47.206) 77.937 ms 57.421 ms 63.6 [AS0] et-0-1-0.4079.sdn-sw.ashb.net.internet2.edu (162.252.70.60) 77.682 ms 71.993 ms 73 [AS0] et-4-1-0.4079.rtsw.wash.net.internet2.edu (162.252.70.65) 71.565 ms 74.988 ms 71.0 [AS21320] internet2-gw.mx1.lon.uk.geant.net (62.40.124.44) 154.926 ms 145.606 ms 145.872 [AS21320] ae0.mx1.lon2.uk.geant.net (62.40.98.79) 146.565 ms 146.604 ms 146.801 ms [AS21320] ae0.mx1.par.fr.geant.net (62.40.98.77) 153.289 ms 184.995 ms 152.682 ms [AS21320] ae2.mx1.gen.ch.geant.net (62.40.98.153) 160.283 ms 160.104 ms 164.147 ms [AS21320] swice1-100ge-0-3-0-1.switch.ch (62.40.124.22) 162.068 ms 160.595 ms 163.095 ms [AS559] swizh1-100ge-0-1-0-1.switch.ch (130.59.36.94) 165.824 ms 164.216 ms 163.983 ms [AS559] swiez3-100ge-0-1-0-4.switch.ch (130.59.38.109) 164.269 ms 164.37014 163.929 ms [A5559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 164.082 ms 170.645 ms 165.372 [AS559] rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) 164.773 ms 165.193 ms 172.158 ms

Bellman-Ford and Floyd-Warshall were examples of...

Not programming in an action movie.

Instead, an algorithmic paradigm!

Programming! We saw many other examples, including Longest **Common Subsequence and** Knapsack Problems.

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- **Steps 3-5:** Use dynamic programming: fill in a table to find the answer!

vnamic

Sometimes we can take even better advantage of optimal substructure...with Greedy algorithms

• Make a series of choices, and commit!

- Intuitively we want to show that our greedy choices never rule out success.
- Rigorously, we usually analyzed these by induction.
 - Examples!
 - Activity Selection
 - Job Scheduling
 - Huffman Coding
 - Minimum Spanning Trees

Cuts and flows

- Minimum s-t cut:
 - is the same as maximum s-t flow!
 - Ford-Fulkerson can find them!
 - useful for routing
 - also assignment problems

Stable matching

How to convince actors to use our matching? Where do preferences come from? Are the incentives set correctly?

algorithm, this time with recourse.

And now we're here

What have we learned?

- A few algorithm design paradigms:
 - Divide and conquer, dynamic programming, greedy
- A few analysis tools:
 - Worst-case analysis, asymptotic analysis, recurrence relations, probability tricks, proofs by induction
- A few common objects:
 - Graphs, arrays, trees, hash functions
- A LOT of examples!

What have we learned? We've filled out a toolbox

- Tons of examples give us intuition about what algorithmic techniques might work when.
- The technical skills make sure our intuition works out.

But there's lots more out there

A taste of what's to come

- CS154 Introduction to Automata and Complexity •
- CS163 The Practice of Theory Research ٠
- CS166 Data Structures ٠
- CS168 The Modern Algorithmic Toolbox ٠
- MS&E 212 Combinatorial Optimization •
- CS250 Error Correcting Codes ٠
- CS252 Analysis of Boolean Functions
- CS254 Computational Complexity ٠
- CS255 Introduction to Cryptography ٠
- CS259Q Quantum Computing ٠
- CS260 Geometry of Polynomials in Algorithm Design ٠
- CS261 Optimization and Algorithmic Paradigms ٠
- CS263 Counting and Sampling
- CS265 Randomized Algorithms ٠
- CS2690 Introduction to Optimization Theory ٠
- MS&E 316 Discrete Mathematics and Algorithms ٠
- CS352 Pseudorandomness
- CS366 Computational Social Choice ٠
- CS368 Algorithmic Techniques for Big Data ٠
- EE364A/B Convex Optimization I and II

findSomeTheoryCourses():

- go to theory.stanford.edu
- Click on "People"
- Look at what we're teaching!

...and many many mo

Today A few gems

- Linear programming
- Random projections

Low-degree polynomials

This will be fluffy, without much detail – take more CS theory classes for more detail!

Linear Programming

- This is a fancy name for optimizing a linear function subject to linear constraints.
- For example:

Maximize x + ysubject to $x \ge 0$ $4x + y \le 0$ $4x + y \le 2$ $x + 2y \le 1$

• It turns out the be an extremely general problem.

We've already seen an example!

Maximize the sum of the flows leaving s

subject to

- None of the flows are bigger than the edge capacities
- At every vertex, stuff going in = stuff going out.

In general

- The constraints define a **polytope**
- The function defines a direction
- We just want to find the vertex that is furthest in that direction.

Duality

How do we know we have an optimal solution?

I claim that the optimum is 5/7. **Proof:** say x and y satisfy the constraints.

• $x + y = \frac{1}{7}(4x + y) + \frac{3}{7}(x + 2y)$ $\leq \frac{1}{7} \cdot 2 + \frac{3}{7} \cdot 1$ You can check this point has value 5/7...but how

Maximize x + y

subject to

would we prove it's optimal other than by eyeballing it?

 $x \ge 0$ $y \ge 0$ $4x + y \leq 2$ $x + 2y \leq 1$

cute, but How did you come up with 1/7, 3/7?

Note: it's not immediately obvious how to turn that into a linear program, this is just meant to convince you that it's plausible.

That's a linear program!

In this case the dual is: min 2w + z s.t. $w, z \ge 0$, $4w + z \ge 1$ and $w + 2z \ge 1$

- How did I find those special values 1/7, 3/7?
- I solved some linear program.
- It's called the dual program.

Minimize the upper bound you get, subject to the proof working.

We've actually already seen this too The Min-Cut Max-Flow Theorem!

LPs and Duality are really powerful

- This general phenomenon shows up all over the place
 - Min-Cut Max-Flow is a special case.
- Duality helps us reason about an optimization problem
 - The dual provides a **certificate** that we've solved the primal.
 - E.g., if you have a cut and a flow with the same value, you must have found a max flow and a min cut.
- We can solve LPs quickly!
 - For example, by intelligently bouncing around the vertices of the feasible region.
 - This is an extremely powerful algorithmic primitive.

Today A few gems

- Linear programming
- Random projections

Low-degree polynomials

A very useful trick Take a random projection and hope for the best.

High-dimensional

For example, each data

(age, height, shoe size, ...)

set of points

point is a vector

Choose a random

instead of the ground.

subspace to project onto

Why would we do this?

- High dimensional data takes a long time to process.
- Low dimensional data can be processed quickly.
- "THEOREM": Random projections approximately preserve properties of data that you care about.

Example: nearest neighbors

• I want to find which point is closest to this one.

Another example: Compressed Sensing

- Start with a sparse vector
 - Mostly zero or close to zero

(**5**, 0, 0, 0, 0, 0.01, 0.01, **5.8**, **32**, **14**, 0, 0, 0, **12**, 0, 0, **5**, 0, .03)

• For example:

This image is sparse

This image is sparse after I take a wavelet transform.

Compressed sensing continued

• Take a random projection of that sparse vector:

Why would I want to do that?

- Image compression and signal processing
- Especially when you never have space to store the whole sparse vector to begin with.

Randomly sampling (in the time domain) a signal that is sparse in the Fourier domain.

Random measurements in an fMRI means you spend less time inside an fMRI

43

All examples of this:

Goal: Given the short vector, recover the long sparse vector.

Long sparse vector

Short vector

But why should this be possible?

• There are tons of long vectors that map to the short vector!

Random short fat matrix

Goal: Given the short vector, recover the long sparse vector.

Short vector

Back to the geometry

Theorem:

random projections preserve the geometry of sparse vectors too.

Choose a random

instead of the ground.

subspace to project onto

If we don't care about algorithms, that's more than enough.

Goal: Given the short vector, recover the long sparse vector.

Long

sparse

vector

An efficient algorithm?

What we'd like to do is:

Minimize number of nonzero entries in x

This norm is the sum of the absolute values of the entries of x

This isn't a nice function

s.t.

Problem: I don't know how to do that efficiently!

Instead:

Minimize $||x||_1$

s.t. Ax = y

Random short

fat matrix A

Ax = y

- It turns out that because the geometry of sparse vectors is preserved, this optimization problem **gives the same answer**.
- We can use **linear programming** to solve this quickly!

Short

vector y

Today A few gems

- Linear programming
- Random projections

Low-degree polynomials

Another very useful trick Polynomial interpolation

 Say we have a few evaluation points of a low-degree polynomial.

- We can recover the polynomial.
 - 2 pts determine a line, 3 pts determine a parabola, etc.
- We can recover the whole polynomial really fast.
- Even works if some of the points are wrong.

f(x)

This is used in practice

• It's called "Reed-Solomon Encoding"

Another application: Designing "random" projections that are better than random

The matrix that treats the big long vector as Alice's message polynomial and evaluates it REALLY FAST at random points.

- This is still "random enough" to make the LP solution work.
- It is much more efficient to manipulate and store!

Today A few gems

- Linear programming
- Random projections

Low-degree polynomials

To learn more:

CS168, CS261, ...

CS168, CS261, CS265, ...

CS168, CS250, ...

What have we learned?

Tons more cool algorithms stuff!

CS161

To see more...

- Take more classes!
- Come hang out with the theory group!
 - Theory lunch, most Thursdays at noon.
 - Join the theory-seminar mailing list for updates.

theory.stanford.edu

Stanford theory group (circa 2017): We are very friendly.

A few final messages...

Thanks to our course coordinators Amelie Byun and John Cho!

 They have been making all the logistics work behind the scenes.

Thanks to Dan Webber!

• Dan has been helping integrate EthiCS components into the course.

Thanks to our superstar CAs!!! tell them you appreciate them!

Alex

Samantha

Allison

Chirag

Ishaan

Matthew

Shreya

Max

Ruiquan

Shreyas

