Lecture 3

Recurrence relations and how to solve them!

Announcements

- Homework 1 is due Wednesday by midnight
- Homework 2 will be released next Wednesday (still solo)
- Please (continue to) send OAE letters to cs161-staff-win2425@cs.stanford.edu (by Fri Jan 17)
- **Midterm**: Wed Feb 12, 6-9pm
- **Final**: Mon Mar 17, 3:30-6:30pm
- Let us know ASAP about midterm exam conflicts
- No final exam accommodations due to conflicting courses

Announcements

- Office hours:
	- Online:

Queue Style

- Click sign up on Queuestatus
- Connect to the Zoom meeting (you'll go to the waiting room)
- The CA will let you into the Zoom room when it's your turn

HW-Party Style

- Join the Zoom meeting and the breakout room corresponding to the question you would like help with.
- The CA will rotate between breakout rooms.
- No Queuestatus.
- In-person:
	- Queuestatus NOT used for in-person OHs (just show up)
	- Default location: Huang basement (unless the calendar says otherwise)

Sections

Taught by your amazing CAs and will

- recap lecture
- show you how to apply the ideas you learned in lecture
- can occasionally cover new material

Sections are as "mandatory" as lectures:

- we will not track attendance, but
- sections (practice, practice, practice) are the best way to learn the material in CS 161
- also, a good place to find community

Schedule

Lectures

EthiCS Lectures

Sections

Homework

Exams

Resources

Policies

Staff / Office Hours

CS 161A

General Section Information

One section will be held on Zoom and recorded. The Zoom link can be found on Canyas.

Sections

 α

Section 0.5: Big-O, Complexity, and Induction (Review Section)

Fri, Jan 10, 10:30 am - 12:00 pm (Aidan, Skilling auditorium)

Resources

- Induction slides: [PDF] \circ
- Big-Oh slides: [PDF] α

Recording

· Video: [Canvas]

Section 1

Thu, Jan 9, 10:30 am - 12:20 pm (Samantha, 240-202, Bldg.240, Main Quad) Thu, Jan 9, 2:00 pm - 3:50 pm (Chirag, 200-032, Lane History Corner, Main Quad) Thu, Jan 9, 4:30 pm - 6:20 pm (Josh, 160-B40, Wallenberg Hall, Main Quad) Fri, Jan 10, 1:00 pm - 2:50 pm (Shreyas, Remote and Recorded) Fri, Jan 10, 3:00 pm - 4:50 pm (Aidan, HEWLETT103, William R. Hewlett Teaching Center) **Resources**

- Handout: [PDF]
- Slides: [PowerPoint] \bullet
- Handout solutions: [PDF] \bullet

Last time….

- Sorting: InsertionSort and MergeSort
- What does it mean to work and be fast?
	- Worst-Case Analysis
	- Big-Oh Notation
- Analyzing correctness of iterative + recursive algs
	- Induction!
- Analyzing running time of recursive algorithms
	- By drawing out a tree and adding up all the work done.

Today

- Recurrence Relations!
	- How do we calculate the runtime of a recursive algorithm?
- The Master Theorem
	- A useful theorem so we don't have to answer this question from scratch each time.
- The Substitution Method
	- A different way to solve recurrence relations, more generally applicable than the Master Method.

Running time of MergeSort

- Let T(n) be the running time of MergeSort on a length n array.
- We know that $T(n) = O(n \log(n)).$
- We also know that T(n) satisfies:

$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)
$$

MERGESORT(A): $n = length(A)$ **if** $n \leq 1$: **return** A $L = MERGESORT(A[:n/2])$ $R = MERGESORT(A[n/2:])$ **return** MERGE(L, R)

Running time of MergeSort

- Let T(n) be the running time of MergeSort on a length n array.
- We know that $T(n) = O(n \log(n)).$
- We also know that T(n) satisfies:

$$
T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + 11 \cdot n
$$

Last time we showed that the time to run MERGE on a problem of size n is $O(n)$. For concreteness, let's say that it's at most 11n operations.

MERGESORT(A): $n = length(A)$ **if** $n \leq 1$: **return** A $L = MERGESORT(A[:n/2])$ $R = MERGESORT(A[n/2:])$ **return** MERGE(L, R)

Note (read after class): $T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + 11 \cdot n$ (with a \leq) is also a recurrence relation. A recurrence relation with an "=" exactly defines a function; a recurrence relation with an inequality only bounds it.

Recurrence Relations

- $T(n) = 2 \cdot T\left(\frac{n}{n}\right)$ 2 + 11 ⋅ is a **recurrence relation.**
- It gives us a formula for T(n) in terms of T(less than n)
- The challenge:

Given a recurrence relation for T(n), find a closed form expression for T(n).

• For example, $T(n) = O(n \log(n))$

Technicalities I Base Cases

Siggi the Studious Stork

- Formally, we should always have base cases with recurrence relations.
- $T(n) = 2 \cdot T \left(\frac{n}{n}\right)$ 2 $+ 11 \cdot n$ with $T(1) = 1$

is not the same function as

- $T(n) = 2 \cdot T\left(\frac{n}{2}\right)$ 2 $+ 11 \cdot n$ with $T(1) = 1000000000$
- However, no matter what T is, $T(1) = O(1)$, so sometimes We'll just omit it. Why does $T(1) = O(1)$?

On your pre-lecture exercise

• You played around with these examples (when n is a power of 2):

1.
$$
T(n) = T\left(\frac{n}{2}\right) + n
$$
, $T(1) = 1$
\n2. $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$, $T(1) = 1$
\n3. $T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n$, $T(1) = 1$

One approach for all of these

Size n $n/2$ $n/2$ n/4 … $n/4$ $n/4$ $n/4$ $\mathsf{n}/2^\mathsf{t}$) ($\mathsf{n}/2^\mathsf{t}$) ($\mathsf{n}/2^\mathsf{t}$) ($\mathsf{n}/2^\mathsf{t}$) ($\mathsf{n}/2^\mathsf{t}$ … • The "tree" approach from last time. • Add up all the work done at all the subproblems.

Pre-lecture exercise

• (when n is a power of 2): 1. $T(n) = T\left(\frac{n}{2}\right)$ 2 $T(1) = 1$

2.
$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n
$$
, $T(1) = 1$

3.
$$
T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n
$$
, $T(1) = 1$

Solutions to pre-lecture exercise (1)

•
$$
T_1(n) = T_1\left(\frac{n}{2}\right) + n
$$
, $T_1(1) = 1$.

• Adding up over all layers:

$$
\sum_{i=0}^{\log(n)} \frac{n}{2^i} = 2n - 1
$$

• So $T_1(n) = O(n)$.

Solutions to pre-lecture exercise (2)

- $T_2(n) = 4T_2$ \overline{n} 2 $+ n$, $T_2(1) = 1$.
- Adding up over all layers:

Contribution at this layer:

More examples

- Needlessly recursive integer multiplication
- $T(n) = 4T(n/2) + O(n)$
- $T(n) = O(n^2)$

- Karatsuba integer multiplication
- $T(n) = 3T(n/2) + O(n)$
- $T(n) = O(n^{\log_2(3)} \approx n^{1.6})$
- MergeSort
- $T(n) = 2T(n/2) + O(n)$
- $\cdot T(n) = O(n \log(n))$ What's the pattern?!?!?!?!

The master theorem

- A formula for many recurrence relations.
	- We'll see an example next lecture where it won't work.
- Proof: "Generalized" tree method.

A useful formula it is. Know why it works you should.

Jedi master Yoda

The master theorem

We can also take n/b to mean either $\left| \frac{n}{b} \right|$ \boldsymbol{b} or \overline{n} \boldsymbol{b} and the theorem is still true.

- Suppose that $a \geq 1$, $b > 1$, and d are constants (independent of n).
- Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O\left(n^d\right)$. Then $T(n) =$ $O(n^d \log(n))$ if $a = b^d$ $O(n^d)$ if $a < b^d$ $O(n^{\log_b(a)})$ if $a > b^d$

Show the Ω, Θ versions after lecture.

Three parameters:

- a : number of subproblems
- b : factor by which input size shrinks

 $d:$ need to do n^d work to create all the subproblems and combine their solutions. Many symbols those are….

Technicalities II Integer division

• If n is odd, I can't break it up into two problems of size n/2.

$$
T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n)
$$

• However (see CLRS, Section 4.6.2 for details), one can show that the Master theorem works fine if you pretend that what you have is:

$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)
$$

• From now on we'll mostly **ignore floors and ceilings** in recurrence relations.

Examples

$$
T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d).
$$

\n
$$
T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}
$$

Proof of the master theorem

- We'll do the same recursion tree thing we did for MergeSort, but be more careful.
- Suppose that $T(n) \leq a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$.

Hang on! The hypothesis of the Master Theorem was that the extra work at each level was $O(n^d)$, but we're writing $cn^d...$

Plucky the Pedantic Penguin

That's true … the hypothesis should be that $T(n) = a \cdot T\left(\frac{n}{b}\right) + O\!\left(n^d\right)$. For simplicity, today we are essentially assuming that $n_0 = 1$ in the definition of big-Oh. It's a good exercise to verify why that assumption is without loss of generality.

Siggi the Studious Stork

Now let's check all the cases

$$
T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}
$$

Case 1:
$$
a = b^d
$$

$$
\int d
$$

$$
T(n) = \begin{cases} 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^d) & \text{if } a > b^d \end{cases}
$$

$$
\begin{aligned}\n\bullet T(n) &= c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t \\
&= c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} 1 \\
&= c \cdot n^d \cdot (\log_b(n) + 1) \\
&= c \cdot n^d \cdot \left(\frac{\log(n)}{\log(b)} + 1\right) \\
&= \Theta\left(n^d \log(n)\right)\n\end{aligned}
$$

Case 2:
$$
a < b^d
$$

$$
\int d^{r(n)} = \begin{cases} 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^d) & \text{if } a < b^d \\ 0(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}
$$

•
$$
T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t
$$
 Less than 1!

Aside: Geometric sums

- What is $\sum_{t=0}^{N} x^{t}$?
- You may remember that $\sum_{t=0}^{N} x^{t} =$ $x^{N+1}-1$ $x-1$ for $x \neq 1$.
- Morally:

$$
x^{0} + x^{1} + x^{2} + x^{3} + \dots + x^{N}
$$

If $0 < x < 1$, this term dominates.
If $x = 1$, all $x > 1$, this term dominates.
If $x > 1$, this term dominates.
If $x > 1$, this term dominates.

$$
1 \le \frac{x^{N+1}-1}{x-1} \le \frac{1}{1-x}
$$

$$
x^{N} \le \frac{x^{N+1}-1}{x-1} \le x^{N} \cdot \left(\frac{x}{x-1}\right)
$$

(Aka, $\Theta(x^{N})$ if x is constant and N is growing).
(Aka, $\Theta(x^{N})$ if x is constant and N is growing).

Case 2:
$$
a < b^d
$$

$$
\int_a^{\frac{D(d+1)}{2}} f(u) du = \begin{cases} 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^d) & \text{if } a > b^d \end{cases}
$$

•
$$
T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t
$$

\n= $c \cdot n^d \cdot \text{[some constant]}$
\n= $\Theta(n^d)$

Case 3:
$$
a > b^d
$$

\n
$$
T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t
$$
\n
$$
= \Theta\left(n^d \left(\frac{a}{b^d}\right)^{\log_b(n)}\right)
$$
\n
$$
= \Theta\left(n^d \left(\frac{a}{b^d}\right)^{\log_b(n)}\right)
$$
\n
$$
= \Theta(n^{\log_b(a)})
$$
\n $$

Now let's check all the cases

$$
T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}
$$

Understanding the Master Theorem

- Let $a \geq 1$, $b > 1$, and d be constants.
- Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O\left(n^d\right)$. Then $T(n) =$ $O(n^d \log(n))$ if $a = b^d$ $O(n^d)$ if $a < b^d$ $O(n^{\log_b(a)})$ if $a > b^d$
- What do these three cases mean?

The eternal struggle

Branching causes the number of problems to explode! **The most work is at the bottom of the tree!**

The problems lower in the tree are smaller! **The most work is at the top of the tree!**

Consider our three warm-ups

1.
$$
T(n) = T\left(\frac{n}{2}\right) + n
$$

\n2.
$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n
$$

\n3.
$$
T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n
$$

First example: tall and skinny tree Size n 1. $T(n) = T\left(\frac{n}{2}\right)$ $\overline{2}$ $+n, \quad (a < b^d)$

• The amount of work done at the top (the biggest problem) swamps the amount of work done anywhere else.

- There are a HUGE number of leaves, and the total work is dominated by the time to do work at these leaves.
- $T(n) = O(m)$ work at bottom $) = O(m^2)$

Second example: just right 2. $T(n) = 2 \cdot T(\frac{n}{2})$ $\overline{2}$ $+n, \qquad (a=b^d)$

- The branching **just** balances out the amount of work.
- The same amount of work is done at every level.
- $T(n) = (number of levels) * (work per level)$
- $=$ $log(n) * O(n) = O(n log(n))$

Size n

n/4

 $n/2$

n/2

 $n/4$ $n/4$ $n/4$

What have we learned?

- The "Master Method" makes our lives easier.
- But it's basically just codifying a calculation we could do from scratch if we wanted to.

The Substitution Method

- Another way to solve recurrence relations.
- More general than the master method.
- Step 1: Generate a guess at the correct answer.
- Step 2: Try to prove that your guess is correct.
- (Step 3: Profit.)

The Substitution Method first example

• Let's return to:

 $T(n) = 2 \cdot T\left(\frac{n}{2}\right)$ $\overline{2}$ $+ n$, with $T(0) = 0, T(1) = 1.$

- The Master Method says $T(n) = O(n \log(n))$.
- We will prove this via the Substitution Method.

$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n, \text{ with } T(1) = 1.
$$

Step 1: Guess the answer

•
$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n
$$

\n• $T(n) = 2 \cdot \left(2 \cdot T\left(\frac{n}{4}\right) + \frac{n}{2}\right) + n$
\n• $T(n) = 4 \cdot T\left(\frac{n}{4}\right) + 2n$
\n• $T(n) = 4 \cdot \left(2 \cdot T\left(\frac{n}{8}\right) + \frac{n}{4}\right) + 2n$
\n• $T(n) = 8 \cdot T\left(\frac{n}{8}\right) + 3n$
\n• ...

You can guess the answer however you want: metareasoning, a little bird told you, wishful thinking, etc. One useful way is to try to "unroll" the recursion, like we're doing here.

Guessing the pattern: $T(n) = 2^t \cdot T\left(\frac{n}{2^t}\right)$ $\left(\frac{n}{2^t}\right) + t \cdot n$ Plug in $t = \log(n)$, and get $T(n) = n \cdot T(1) + \log(n) \cdot n = n(\log(n) + 1)$

 $T(n) = 2 \cdot T\left(\frac{n}{2}\right)$ 2 + *n*, with $T(1) = 1$.

Step 2: Prove the guess is correct.

- Inductive Hypothesis: $T(n) = n(\log(n) + 1)$.
- Base Case (n=1): $T(1) = 1 = 1 \cdot (\log(1) + 1)$
- Inductive Step:
	- Assume Inductive Hyp. for $1 \leq n \leq k$:
		- Suppose that $T(n) = n(\log(n) + 1)$ for all $1 \le n \le k$.
	- Prove Inductive Hyp. for n=k:
		- $T(k) = 2 \cdot T(\frac{k}{2})$ $\overline{2}$ $+ k$ by definition
		- $T(k) = 2 \cdot \left(\frac{k}{2} \left(\log\left(\frac{k}{2}\right)\right)\right)$ $+ 1$ $+ k$ by induction.
		- $T(k) = k(\log(k) + 1)$ by simplifying.
		- So Inductive Hyp. holds for n=k.
- Conclusion: For all $n \geq 1$, $T(n) = n(\log(n) + 1)$

We're being sloppy here about floors and ceilings…what would you need to do to be less sloppy?

Step 3: Profit

- Pretend like you never did Step 1, and just write down:
- **Theorem:** $T(n) = O(n \log(n))$
- **Proof: [Whatever you wrote in Step 2]**

What have we learned?

- The substitution method is a different way of solving recurrence relations.
- Step 1: Guess the answer.
- Step 2: Prove your guess is correct.
- Step 3: Profit.
- We'll get more practice with the substitution method next lecture!

Another example (if time)

(If not time, that's okay; we'll see these ideas in Lecture 4)

•
$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n
$$

$$
\bullet T(2)=2
$$

- Step 1: Guess: $O(n \log(n))$ (divine inspiration).
- But I don't have such a precise guess about the form for the $O(n \log(n))$...
	- That is, what's the leading constant?
- Can I still do Step 2?

Aside: What's wrong with this?

- Inductive Hypothesis: $T(n) = O(n \log(n))$
- Base case: $T(2) = 2 = O(1) = O(2 \log(2))$
- Inductive Step:
	- Suppose that $T(n) = O(n \log(n))$ for $n \leq k$.
	- Then $T(k) = 2 \cdot T\left(\frac{k}{2}\right)$ \overline{a} $+ 32 \cdot k$ by definition
	- So $T(k) = 2 \cdot O\left(\frac{k}{2} \log\left(\frac{k}{2}\right)\right)$ $+ 32 \cdot k$ by induction
- Figure out what's wrong here!!!
- But that's $T(k) = O(k \log(k))$, so the I.H. holds for n=k.
- Conclusion:
	- By induction, $T(n) = O(n \log(n))$ for all n.

Plucky the Pedantic Penguin

Siggi the Studious Stork

Another example (if time)

(If no time, that's okay; we'll see these ideas in Lecture 4)

•
$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n
$$

$$
\bullet T(2)=2
$$

- Step 1: Guess: $O(n \log(n))$ (divine inspiration).
- But I don't have such a precise guess about the form for the $O(n \log(n))$...
	- That is, what's the leading constant?
- Can I still do Step 2?

Step 2: Prove it, working backwards to figure out the constant

- Guess: $T(n) \leq C \cdot n \log(n)$ for some constant C TBD.
- Inductive Hypothesis (for $n \ge 2$) : $T(n) \le C \cdot n \log(n)$
- Base case: $T(2) = 2 \leq C \cdot 2 \log(2)$ as long as $C \geq 1$
- Inductive Step:

$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n
$$

$$
T(2) = 2
$$

Inductive Hypothesis: $T(n) \leq C \cdot n \log(n)$

Inductive step

• Assume that the inductive hypothesis holds for n<k.

•
$$
T(k) = 2T(\frac{k}{2}) + 32k
$$

\n• $\leq 2C\frac{k}{2}\log(\frac{k}{2}) + 32k$
\n• $= k(C \cdot \log(k) + 32 - C)$
\n• $\leq k(C \cdot \log(k))$ as long as $C \geq 32$.

• Then the inductive hypothesis holds for n=k.

$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n
$$

$$
T(2) = 2
$$

Step 2: Prove it, working backwards to figure out the constant

- Guess: $T(n) \leq C \cdot n \log(n)$ for some constant C TBD.
- Inductive Hypothesis (for $n \geq 2$): $T(n) \leq C \cdot n \log(n)$
- Base case: $T(2) = 2 \leq C \cdot 2 \log(2)$ as long as $C \geq 1$
- Inductive step: Works as long as $C \geq 32$
	- So choose $C = 32$.
- Conclusion: $T(n) \leq 32 \cdot n \log(n)$

$$
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n
$$

$$
T(2) = 2
$$

Step 3: Profit.

- **Theorem:** $T(n) = O(n \log(n))$
- **Proof:**
	- Inductive Hypothesis: $T(n) \leq 32 \cdot n \log(n)$
	- Base case: $T(2) = 2 \leq 32 \cdot 2 \log(2)$ is true.
	- Inductive step:
		- Assume Inductive Hyp. for n<k.

•
$$
T(k) = 2T\left(\frac{k}{2}\right) + 32k
$$
 By the

•
$$
\leq 2 \cdot 32 \cdot \frac{k}{2} \log(\frac{k}{2}) + 32k
$$

def. of $T(k)$

By induction

- $k(32 \cdot \log(k) + 32 32)$
	- $= 32 \cdot k \log(k)$
- This establishes inductive hyp. for n=k.
- Conclusion: $T(n) \leq 32 \cdot n \log(n)$ for all $n \geq 2$.
	- By the definition of big-Oh, with $n_0 = 2$ and $c = 32$, this implies that $T(n) = O(n \log(n))$

Why two methods?

- Sometimes the Substitution Method works where the Master Method does not.
- More on this next time!

Next Time

- What happens if the sub-problems are different sizes?
- And when might that happen?

BEFORE Next Time

• Pre-lecture 4 exercises!