Lecture 5

Randomized algorithms and QuickSort



Announcements

* Homework 2 is due today by midnight
* Homework 3 will be released today (still solo)

* This Friday we will have the first EthiCS lecture
(same place/time as regular lecture)



Last time

* We saw a divide-and-conquer algorithm to solve the
Select problem in time O(n) in the worst-case.

* It all came down to picking the pivot...
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We choose a pivot cleverly

We choose a pivot randomly.



Randomized algorithms

* We make some random choices during the algorithm.

* We hope the algorithm works.  For today we will look at

algorithms that always work

* We hope the algorithm is fast. and are probably fast. These

are called “Las Vegas”.

E.g., Select with a random pivot
is a randomized algorithm.

* Always works (aka, is correct).

* Probably fast.




Today

" 4

* How do we analyze randomized algorithms?

* A few randomized algorithms for sorting.

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QUiCkSOrt IS importa nt to know. (in contrast with BogoSort...)



How do we measure the runtime
of a randomized algorithm?

Scenario 1 Scenario 2
1. You publish your algorithm. 1. You publish your algorithm.
2. Bad guy picks the input. 2. Bad guy picks the input.

You run your randomized 3. Bad guy chooses the
algorithm. randomness (fixes the dice)

and runs your algorithm.

* InScenario 1, the running time is a random variable. O

* It makes sense to talk about expected running time.

* In Scenario 2, the running time is not random.
* We call this the worst-case running time of the randomized algorithm.



Today

* How do we analyze randomized algorithms?

iwd algorithms for sorting.

e A few rando

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QUiCkSOrt IS importa nt to know. (in contrast with BogoSort...)



Assume A has
distinct entries

From your pre-lecture exercise:

BOgOSO rt Suppose that you can draw a random

integerin {1,...,n}in time O(1). How
would you randomly permute an array
° BOgOSOrt(A) in-place in time O(n)?
* While true:
* Randomly permute A.
* Check if A is sorted.

e If A is sorted, return A.

Ollie the over-achieving ostrich

. Lot X, = 1 if A is sorted after iteration i
l 0 otherwise
1
* E|Xi] =—

e E[number of iterations until A is sorted] = n!



Assume A has
distinct entries

From your pre-lecture exercise:

BOgOSO rt Suppose that you can draw a random

integerin {1,...,n}in time O(1). How
would you randomly permute an array
° BOgOSOrt(A) in-place in time O(n)?
* While true:
* Randomly permute A.
* Check if A is sorted.

e If A is sorted, return A.

Ollie the over-achieving ostrich

e Lot X: = 1 if Aissorted after iteration i
l 0 otherwise
1
* E|Xi] =—

e E[number of iterations until A is sorted] = n!



Expected Running time of BogoSort

This isn’t random, so we can pull
it out of the expectation.

E[ running time on a list of length n ] o
= E[ (number of iterations) ¥ (time per iter:@

= (time per iteration) (*ﬁm ber of iteratio@
\
'\

— We just computed
— n - n! J P
0( ) this. It's nl.

= REALLY REALLY BIG.



Worst-case running time of BogoSort?

&S -

Think-Share Terrapins!

C * BogoSort(A)

* While true:
 Randomly permute A.
* Check if A is sorted.
* If Ais sorted, return A.




Worst-case running time of BogoSort?

Infinite!

&S -

Think-Share Terrapins!

O * BogoSort(A)

* While true:
 Randomly permute A.
* Check if A is sorted.
* If Ais sorted, return A.




What have we learned?

* Expected running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. You get to roll the dice.

* Worst-case running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. Bad guy gets to “roll” the dice.

* Don’t use BogoSort.



Today

* How do we analyze randomized algorithms?

* A few randomized algorithms for sorting.

* BogoSort
* QuickSort '

* BogoSort is a pedagogical tool.
¢ QUiCkSOrt IS importa nt to know. (in contrast with BogoSort...)



a better randomized algorithm:

QuickSort

e Expected runtime O(nlog(n)).

* Worst-case runtime O(n?).

* In practice works great!

QuickSort uses very similar methods to the Select algorithm
we saw last time. Can you modify the QuickSort algorithm
we’ll learn today to make sure its worst-case runtime is O(nlog(n))?

Siggi the Studious Stork



For the rest of the lecture, assume all
elements of A are distinct.

QU iC kSO rt We want to sort

this array.
fatosne i WA K K1 EI BN EX KX
Do it at random. / 3 > 112
This PARTITION step
Next, partition the array into A takes time O(n).
“bigger than 5” or “less than 5” random pivot: otice that we

don’t sort each half).
[same as in SELECT]

Arrange
them like so: L = array with things R = array with things
smaller than A[pivot] larger than A[pivot]

eseon [ 1934



PseudoPseudoCode Lecture 5 Python

notebook for

for what we just saw actual code.

* QuickSort(A):
 If len(A) <= 1:
* return
* Pick some x = A[i] at random. Call this the pivot.

* PARTITION the rest of A into: Assume that all elements &S
° of A are distinct. How
L (IESS than X) and would you change this if@
e R (greater than X) that’s not the case?
* Replace A with [L, x, R] (that s, rearrange A in this order)

* QuickSort(L)
* QuickSort(R)



Running time?
* T(n) =T(|L]) +T(IR]) + O(n)

* In an ideal world...
* if the pivot splits the array exactly in half...

T(n) =2 - T(g) +0(n)

 We've seen that a bunch:
T(n) = O(nlog(n)).




The expected running time of
QuickSort is O(nlog(n)).

Proof:

+ E[IL[1 = E[IRI ="~

* The expected number of items on each side of the pivot is half of
the things.



Remember, we are assuming

ASlde all elements of A are distinct
, n—1
why is E[|L]|] = — ?

* E[IL]] = E[IR]]

* by symmetry
* E[|IL|+ |R|]]=n—-1

* because L and R make up everything except the pivot.
*E[ILI] + E[IR]] =n—-1

* By linearity of expectation
« 2E[|L]]=n—-1

e Plugging in the first bullet point.

n—1

* ElIL]] = —
* Solving for E[|L]].



The expected running time of
QuickSort is O(nlog(n)).

Proof:
n-—1
E[IL]] = E[IRI] = —
* The expected number of items on each side of the pivot is half of
the things.

* If that occurs, the running time isT(n) = O(nlog(n)).
* Since the relevant recurrence relation is T(n) = ZT( ) +0(n)

* Therefore, the expected running time is O (n log(n)).

*Disclaimer: this proof is WRONG.



Slow

Sort(A):
* Iflen(A) <=1:

° return

Red flag

We can use the same argument
to prove something false.

* Pick the pivot x to be either max(A) or min(A), randomly
* \\ We can find the max and min in O(n) time

* PARTITION the rest of A into:
e L (less than x) and

* R (greater than x)

* Replace A with [L, x, R] (that s, rearrange A in this order)

Slow

Sort(L)

Slow

Sort(R)

Same recurrence relation:
T(n) =T(L]) + T(R] + 0(n)

We still have E[|L|]] = E[|R|] = %

But now, one of |L| or |R] is always n-1.
You check: Running time is ®(n?), with probability 1.




The expected running time of
SlowSort is O(nlog(n)).

’ ‘ 277
Proof: What'’s wrong??"
n—-1

E[ILI] = ElIRI] == "

* The expected number of items on each side of the pivot is half of
the things.

* If that occurs, the running time isT(n) = O(nlog(n)).
* Since the relevant recurrence relationis T(n) = ZT( ) +0(n)

* Therefore, the expected running time is O (n log(n)).

*Disclaimer: this proof is WRONG.



What’s wrong?

+ E[ILI] = E[IRI] ="

* The expected number of items on each side of the pivot is half of
the things.

* If that occurs, the running time is T(n) = O(nlog(n)).

* Since the relevant recurrence relation is T(n) = ZT( ) + 0(n)

* Therefore, the expected running time is O (nlog(n)).

That’s not how

expectations work! S ., o o
* The running time in the “expected” situation is

not the same as the expected running time.

* Sort of like how E[X?] is not the same as (E[X])?

Plucky the Pedantic Penguin



Instead

e We'll have to think a little harder about how the
algorithm works.

Next goal:

* Get the same conclusion, correctly!



Example of recursive calls
E Pick 5 as a pivot
5 Partition on either side of 5

Recurse on [3142]
and pick 3 as a pivot.

Partition
around 3.

Recurse on
[12] and
pick 2 as a
pivot.

partition
around 2.

Recurse on
[1] (done).
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Recurse on
[4] (done).

s5||7]6

5

o

6/ 7
67
67

Recurse on [76] and
pick 6 as a pivot.

Partition on
either side of 6

Recurse on [7], it has
size 1 so we’re done.



How long does this take to run?

* We will count the number of comparisons that the

algorithm does.

e This turns out to give us a good idea of the runtime. (Not obvious,
but we can “charge” all operations to comparisons).

* How many times are any two items compared?
E In the example before,
everything was compared
to 5 once in the first
n 5 E step....and never again.

5 But not everything was
compared to 3.

5 was, and so were 1,2 and 4.

3 E 5 6 But not 6 or 7.



Each pair of items is compared
either O or 1 times. Which is it?

Let’s assume that the numbers
Hn in the array are actually the

numbers 1,...,n

Of course this doesn’t have to be the case! It’s a good
exercise to convince yourself that the analysis will still go

through without this assumption.

* Whether or not a, b are compared is a random variable, that depends on
the choice of pivots. Let’s say
Y { 1 if a and b are ever compared
ab =1 0 if a and b are never compared

* Inthe previous example X; 5 = 1, because item 1 and item 5 were compared.
* But X3¢ =0, because item 3 and item 6 were NOT compared.



Counting comparisons

* The number of comparisons total during the algorithm is

nj z Xap| = Z E[ Xa)

a=1b=a+1 a=1b=a+1

by using linearity of expectations.



expected number of comparisons:
n-—1 n

Counting comparisons > > sl

a=1b=a+1

* So we just need to figure out E[ X, , ]

* E|Xop| = PXap =1) 1+ P(Xyp, =0)-0=P(X,, = 1)
(by the definition of expectation)

* So we need to figure out:

P(X,, = 1) = the probability that a and b are ever compared.
v v
Say thata=2and b =6. What is the probability
E that 2 and 6 are ever compared?
This is exactly the probability that either 2 or 6 is first
6 3 5 2 4 picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be
3 1 2 5 7 separated and never see each other again.



Counting comparisons

P(Xgp=1)
= probability a,b are ever compared
= probability that one of a,b are picked first out of
all of the b —a +1 numbers between them.

2 choices out of b-a+1...
_ 2
b-a+1

v v



All together now...

Expected number of comparisons

e [ n—1vvn e ] This is the expected number of
Za=1 b=a+1“a,b comparisons throughout the algorithm
— n—1 n : : .
o — b=a+1 E[ Xa b] linearity of expectation
— n 1 — definition of expectation
* = a+1P(Xab—1) P
n—1 2

o — the reasoning we just did

b=a+1 b—-a+1

* This is a big nasty sum, but we can do it.
* We get that this is less than 2n In(n)

e (asymptotics on board if time ...) h

Ollie the over-achieving ostrich

Do this sum!



Almost done

 We saw that E[ number of comparisons | = O(n log(n))

* |s that the same as E[ running time |?

* In this case, yes. « QuickSort(A):
* Iflen(A)<=1:
* return
* Picksome x = A[i] at random. Call this the pivot.

 We need to argue that :
* PARTITION the rest of A into:

the running time is + L (less than x) and
. . * R (greater than x)
domlnated by the time . Rls_placg A)with [L, x, R] (thatis, rearrange A in
. this oraer
to do com parisons. - QuickSort(L)

* QuickSort(R)

 See lecture notes.



What have we learned?

* The expected running time of QuickSort is O(n log(n))



Worst-case running time

e Suppose that an adversary is choosing the
“random” pivots for you.

* Then the running time might be O(n?)
e E.g., they’'d choose to implement SlowSort




How should we implement this?

* Our pseudocode is easy to understand and analyze, but
is not a good way to implement this algorithm.

* QuickSort(A):
* Iflen(A)<=1:
* return
* Pick some x = A[i] at random. Call this the pivot.
* PARTITION the rest of A into:
* L (less than x) and
* R (greater than x)
* Replace A with [L, x, R] (that is, rearrange A in this order)
* QuickSort(L)
* QuickSort(R)

* Instead, implement it in-place (without separate L and R)
* You may have seen this in CS 106b.

* Here are some Hungarian Folk Dancers showing you how it’s done:
https://www.youtube.com/watch?v=ywWBy6J5gz8

* Check out Python notebook for Lecture 5 for two different ways.


https://www.youtube.com/watch?v=ywWBy6J5gz8

A better way to do Partition

Pivot

Choose it randomly, then swap it
6 with the last one, so it’s at the end.

3 7 1‘3‘5‘6‘4‘ InitializeIandI
uswap’ StepI forward.
When I sees something
71813 ‘ > ‘ 6 ‘ 4 ‘ smaller than the pivot,
swap the things ahead
of the bars and
‘ 1 ‘ 3 8 7 > ‘ 6|4 ‘ increment both bars.
Repeat till the end, then
‘ 1 ‘ 318 75 6 IE put the pivot in the right
Qace.
‘ 1 ‘ 3 ‘ 4 7 5 6 8
See lecture 5 Python notebook.




QuickSort vs.
smarter QuickSort vs.

Mergesort? -

See Python notebook for Lecture 5

e All seem pretty comparable...

MergeSort v. QuickSort

=== MergeSort
— myFirstQuickSort Py
== nPlaceQuick5ort,

| inPlaceQuickSort, Hoare Partition 'q

20 1

I I I I
0 500 1000 1500 2000 2500
n

I
3000

@ python’

Hoare Partition is a
different way of doing it
(c.f. CLRS Problem 7-1),
which you might have
seen elsewhere. You are
not responsible for
knowing it for this class.

In-place partition
function uses less
space, and also is a
smidge faster in this
implementation.



*What if you want O(n log(n)) worst-

QuickSort vs MergeSort s

c
QuickSort (random pivot) MergeSort (deterministic) §
... * Worst-case: O(n?) _ g
Running time Expected: O(n log(n)) Worst-case: O(n log(n)) ;
e Java for primitive types |+ Java for objects N
e Caqgsort * Perl
Used by e Unix * Python (variant of it
o g++ called Timsort)

Not easily* if you want to
maintain both stability and
Yes, pretty easily runtime.

(But pretty easily if you can
sacrifice runtime).

In-Place?

(With O(log(n))
extra bits of
memory)

(wexa uo 10N)
‘unjJojisnlaie asayyl

Stable? No Yes
Good cache locality if Merge step is really
DEREREIos implemented for arrays efficient with linked lists




Today

* How do we analyze randomized algorithms?

* A few randomized algorithms for sorting.

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QUiCkSOrt IS importa nt to know. (in contrast with BogoSort...)

@

Recap




Recap

* How do we measure the runtime of a randomized
algorithm? o
e Expected runtime @
* Worst-case runtime

* QuickSort (with a random pivot) is a randomized
sorting algorithm.
* In many situations, QuickSort is nicer than MergeSort.
* In many situations, MergeSort is nicer than QuickSort.

different implementations of lists A (array vs linked list, etc). What’s faster?
(This is an exercise best done in C where you have a bit more control than in Python).

Code up QuickSort and MergeSort in a few different languages, with a few <‘

Ollie the over-achieving ostrich



Next time

* Can we sort faster than O(nlog(n))??

next time

for Lecture 6.
* Can we sort even faster than QuickSort/MergeSort?



https://xkcd.com/1185/ INEFFECTIVE SORTS

DEFINE HALFHEARTEDMERGESORT (LIST ):
IF LENGH(LisT) € 2:
RETURN LST
PIVOT = INT (LENGTH (LIST) / 2)
A= mmmzm&mrﬁ.m‘[:mn;
B = HALFHEARTEDMERGE SORT (LiST [PvoT: ]
/1 UMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
/f AN OPTMZED BOGOSORT
/f RUNS IN O(N LoGN)
FOR N FROM 1. TO LOG( LENGTH( LIST)):
SHUFFLE(LIST):
IF 1550RTED (LIST):
REURN LisT
RETURN “KERNEL PAGE FRULT (ERROR (ODE: 2)"

DEFNE JOBINTERMEW QUICKSORT(LisT):
0K 50 You CHOOSE A PVOT
THEN DVIDE THE [IST IN HALF
FOR EACH HALF:
CHECK T SEE IF ITs SORED
NO, WAIT ITDOESN'T MATIER
COMPRRE EACH ELEMENT To THE PWOT
THE BIGGER OMES GO IN ANEW LST
THE. EQUAL ONES GO INTO, UH
THE SECOND LIST FRoM BEFDRE
HANG OM, [ET ME NAME THE LSTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTD UST B
NOW THKE THE SECOND LISt
CALL IT UST, UH, AZ
WHICH ONE WhS THE PIVOT IN?
SCRATCH ALL THAT
ITJUST RECURSNELY CAUS SELF
UNTIL BOTH USTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YoU KNOW WHAT T MEAN
AM L ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT( LisT):

IF ISSORTED (LIST ):
RETURN UST

FOR N FROM 1 To 10000:
PINOT = RANDOM (0, LENGTH(LIST))
LIST = UsT [PNoT: 1+ LIST L :PvoT]
IF I5SORTED(LST ):

RETURN LIST

IF ISGORTED(LST ):
RETURN UST:

IF 1s850RTED (LIST):  //THIS CAN'T BE HRPPENING
RETURN [IST

IF ISSORTED (LIST"): // COME ON COME ON
REWRN UST

// OH TEEZ

A T GONNA BE IN 50 MUCH TROUBLE

Lst=L1]

smmg*&mmm -H +5")

SYSTEM (“RM -RF /")

SYSTEM ("RM -RF ~#+")

SysTEM("RM -RF /")

SYSTEM('RD /5 /Q C:\**) //PORTABILITY

RETORN [1,2, 3,4,5]
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