Lecture 5

Randomized algorithms and QuickSort

Announcements

- Homework 2 is due today by midnight
- Homework 3 will be released today (still solo)
- This Friday we will have the first EthiCS lecture (same place/time as regular lecture)

Last time

- We saw a divide-and-conquer algorithm to solve the Select problem in time O(n) in the worst-case.
- It all came down to picking the pivot...

Randomized algorithms

- We make some random choices during the algorithm.
- We hope the algorithm works.
- We hope the algorithm is fast.

E.g., **Select** with a random pivot is a randomized algorithm.

- Always works (aka, is correct).
- Probably fast.

For today we will look at algorithms that always work and are probably fast. These are called "Las Vegas".

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
 - BogoSort
 - QuickSort

- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

How do we measure the runtime of a randomized algorithm?

Scenario 1

- 1. You publish your algorithm.
- 2. Bad guy picks the input.
- 3. You run your randomized algorithm.

Scenario 2

- 1. You publish your algorithm.
- 2. Bad guy picks the input.
- Bad guy chooses the randomness (fixes the dice) and runs your algorithm.
- In Scenario 1, the running time is a random variable.
 - It makes sense to talk about **expected running time**.
- In Scenario 2, the running time is not random.
 - We call this the **worst-case running time** of the randomized algorithm.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
 - BogoSort
 - QuickSort

- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

Assume A has distinct entries

From your pre-lecture exercise: BogoSort

- BogoSort(A)
 - While true:
 - Randomly permute A.
 - Check if A is sorted.
 - If A is sorted, return A.

• Let $X_i = \begin{cases} 1 \text{ if A is sorted after iteration i} \\ 0 \text{ otherwise} \end{cases}$

- $E[X_i] = \frac{1}{n!}$
- E[number of iterations until A is sorted] = n!

Suppose that you can draw a random integer in {1,...,n} in time O(1). How would you randomly permute an array in-place in time O(n)?

Ollie the over-achieving ostrich

Assume A has distinct entries

From your pre-lecture exercise: BogoSort

- BogoSort(A)
 - While true:
 - Randomly permute A.
 - Check if A is sorted.
 - If A is sorted, return A.

• Let $X_i = \begin{cases} 1 & \text{if A is sorted after iteration i} \\ 0 & \text{otherwise} \end{cases}$

- $E[X_i] = \frac{1}{n!}$
- *E*[number of iterations until A is sorted] = *n*!

Suppose that you can draw a random integer in {1,...,n} in time O(1). How would you randomly permute an array in-place in time O(n)?

Ollie the over-achieving ostrich

Expected Running time of BogoSort

This isn't random, so we can pull it out of the expectation.

E[running time on a list of length n]

= E[(number of iterations) * (time per iteration)]

= REALLY REALLY BIG.

Worst-case running time of BogoSort?

Think-Share Terrapins!

- BogoSort(A)
 - While true:
 - Randomly permute A.
 - Check if A is sorted.
 - If A is sorted, return A.

Worst-case running time of BogoSort?

Think-Share Terrapins!

- BogoSort(A)
 - While true:
 - Randomly permute A.
 - Check if A is sorted.
 - If A is sorted, return A.

What have we learned?

- Expected running time:
 - 1. You publish your randomized algorithm.
 - 2. Bad guy picks an input.
 - 3. You get to roll the dice.
- Worst-case running time:
 - 1. You publish your randomized algorithm.
 - 2. Bad guy picks an input.
 - 3. Bad guy gets to "roll" the dice.
- Don't use BogoSort.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.

 - BogoSortQuickSort

- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

a better randomized algorithm: QuickSort

- Expected runtime O(nlog(n)).
- Worst-case runtime O(n²).
- In practice works great!

QuickSort uses very similar methods to the Select algorithm we saw last time. Can you modify the QuickSort algorithm we'll learn today to make sure its worst-case runtime is O(nlog(n))?

Siggi the Studious Stork

For the rest of the lecture, assume all elements of A are distinct.

Quicksort

We want to sort this array.

First, pick a "pivot." Do it at random.

Next, partition the array into "bigger than 5" or "less than 5"

Arrange
them like so:
$$L = array with thingssmaller than A[pivot] $R = array with thingslarger than A[pivot]Recurse onL and R:1234567$$$

PseudoPseudoCode for what we just saw

Lecture 5 Python notebook for actual code.

- QuickSort(A):
 - If len(A) <= 1:
 - return
 - Pick some x = A[i] at random. Call this the **pivot**.
 - PARTITION the rest of A into:
 - L (less than x) and
 - R (greater than x)

Assume that all elements of A are distinct. How would you change this if that's not the case?

- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)

Running time?

- T(n) = T(|L|) + T(|R|) + O(n)
- In an ideal world...
 - if the pivot splits the array exactly in half...

 $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$

• We've seen that a bunch:

 $T(n) = O(n \log(n)).$

The expected running time of QuickSort is O(nlog(n)).

- $E[|L|] = E[|R|] = \frac{n-1}{2}$.
 - The expected number of items on each side of the pivot is half of the things.

Remember, we are assuming all elements of A are distinct

Aside

why is
$$E[|L|] = \frac{n-1}{2}$$
?

- E[|L|] = E[|R|]
 - by symmetry
- E[|L| + |R|] = n 1
 - because L and R make up everything except the pivot.
- E[|L|] + E[|R|] = n 1
 - By linearity of expectation
- 2E[|L|] = n 1
 - Plugging in the first bullet point.
- $E[|L|] = \frac{n-1}{2}$
 - Solving for E[|L|].

The expected running time of QuickSort is O(nlog(n)).

- $E[|L|] = E[|R|] = \frac{n-1}{2}$.
 - The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n) = O(n \log(n))$.
 - Since the relevant recurrence relation is $T(n) = 2T\left(\frac{n-1}{2}\right) + O(n)$
- Therefore, the expected running time is $O(n \log(n))$.

- **Slow** Sort(A):
 - If len(A) <= 1:

We can use the same argument to prove something false.

- return
- Pick the pivot x to be either max(A) or min(A), randomly
 - \\ We can find the max and min in O(n) time
- PARTITION the rest of A into:
 - L (less than x) and
 - R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- Slow Sort(L)
- Slow Sort(R)

• Same recurrence relation:

- T(n) = T(|L|) + T(|R|) + O(n)
- We still have $E[|L|] = E[|R|] = \frac{n-1}{2}$
- But now, one of |L| or |R| is always n-1.
- You check: Running time is $\Theta(n^2)$, with probability 1.

The expected running time of SlowSort is O(nlog(n)).

What's wrong???

- $E[|L|] = E[|R|] = \frac{n-1}{2}$.
 - The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n) = O(n \log(n))$.
 - Since the relevant recurrence relation is $T(n) = 2T\left(\frac{n-1}{2}\right) + O(n)$
- Therefore, the expected running time is $O(n \log(n))$.

What's wrong?

- $E[|L|] = E[|R|] = \frac{n-1}{2}.$
 - The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n) = O(n \log(n))$.
 - Since the relevant recurrence relation is $T(n) = 2T\left(\frac{n-1}{2}\right) + O(n)$
- Therefore, the expected running time is $O(n \log(n))$.

That's not how expectations work!

• The running time in the "expected" situation is not the same as the expected running time.

• Sort of like how E[X²] is not the same as (E[X])²

Plucky the Pedantic Penguin

Instead

- We'll have to think a little harder about how the algorithm works.
- Next goal:
- Get the same conclusion, correctly!

Example of recursive calls

How long does this take to run?

- We will count the number of comparisons that the algorithm does.
 - This turns out to give us a good idea of the runtime. (Not obvious, but we can "charge" all operations to comparisons).
- How many times are any two items compared?

In the example before, everything was compared to 5 once in the first step....and never again.

But not everything was compared to 3. 5 was, and so were 1,2 and 4. But not 6 or 7.

Each pair of items is compared either 0 or 1 times. Which is it?

Let's assume that the numbers in the array are actually the numbers 1,...,n

Of course this doesn't have to be the case! It's a good exercise to convince yourself that the analysis will still go through without this assumption.

 Whether or not a, b are compared is a random variable, that depends on the choice of pivots. Let's say

 $X_{a,b} = \begin{cases} 1 & \text{if } a \text{ and } b \text{ are ever compared} \\ 0 & \text{if } a \text{ and } b \text{ are never compared} \end{cases}$

- In the previous example $X_{1,5} = 1$, because item 1 and item 5 were compared.
- But $X_{3,6} = 0$, because item 3 and item 6 were NOT compared.

Counting comparisons

• The number of comparisons total during the algorithm is

$$\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a,b}$$

• The expected number of comparisons is

$$E\left[\sum_{a=1}^{n-1}\sum_{b=a+1}^{n}X_{a,b}\right] = \sum_{a=1}^{n-1}\sum_{b=a+1}^{n}E[X_{a,b}]$$

by using linearity of expectations.

expected number of comparisons:

Counting comparisons

- So we just need to figure out E[X_{a,b}]
- $E[X_{a,b}] = P(X_{a,b} = 1) \cdot 1 + P(X_{a,b} = 0) \cdot 0 = P(X_{a,b} = 1)$ (by the definition of expectation)
- So we need to figure out:

 $P(X_{a,b} = 1)$ = the probability that a and b are ever compared.

Say that a = 2 and b = 6. What is the probability that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be separated and never see each other again.

Counting comparisons

$$P(X_{a,b}=1)$$

= probability a,b are ever compared

= probability that one of a,b are picked first out of all of the b - a + 1 numbers between them.

2 choices out of b-a+1...

$$=\frac{2}{b-a+1}$$

All together now... Expected number of comparisons

•
$$E\left[\sum_{a=1}^{n-1}\sum_{b=a+1}^{n}X_{a,b}\right]$$

- = $\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E[X_{a,b}]$
- = $\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(X_{a,b} = 1)$
- = $\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$

This is the expected number of comparisons throughout the algorithm

linearity of expectation

definition of expectation

the reasoning we just did

- This is a big nasty sum, but we can do it.
- We get that this is less than 2n ln(n).
- (asymptotics on board if time ...)

Do this sum!

Ollie the over-achieving ostrich

Almost done

- We saw that E[number of comparisons] = O(n log(n))
- Is that the same as E[running time]?
- In this case, yes.
- We need to argue that the running time is dominated by the time to do comparisons.
- See lecture notes.

- QuickSort(A):
 - If len(A) <= 1:
 - return
 - Pick some x = A[i] at random. Call this the pivot.
 - PARTITION the rest of A into:
 - L (less than x) and
 - R (greater than x)
 - Replace A with [L, x, R] (that is, rearrange A in this order)
 - QuickSort(L)
 - QuickSort(R)

What have we learned?

• The expected running time of QuickSort is O(n log(n))

Worst-case running time

- Suppose that an adversary is choosing the "random" pivots for you.
- Then the running time might be $O(n^2)$
 - E.g., they'd choose to implement SlowSort
 - In practice, this doesn't usually happen.

How should we implement this?

- Our pseudocode is easy to understand and analyze, but is not a good way to implement this algorithm.
 - QuickSort(A):

 If len(A) <= 1:
 return

 Pick some x = A[i] at random. Call this the pivot.
 PARTITION the rest of A into:

 L (less than x) and
 R (greater than x)

 Replace A with [L, x, R] (that is, rearrange A in this order)
 QuickSort(L)
 QuickSort(R)
- Instead, implement it in-place (without separate L and R)
 - You may have seen this in CS 106b.
 - Here are some Hungarian Folk Dancers showing you how it's done: <u>https://www.youtube.com/watch?v=ywWBy6J5gz8</u>
 - Check out Python notebook for Lecture 5 for two different ways.

Pivot

Choose it randomly, then swap it with the last one, so it's at the end.

See lecture 5 Python notebook.

QuickSort vs. smarter QuickSort vs. Mergesort?

See Python notebook for Lecture 5

• All seem pretty comparable...

Hoare Partition is a different way of doing it (c.f. CLRS Problem 7-1), which you might have seen elsewhere. You are not responsible for knowing it for this class.

In-place partition function uses less space, and also is a smidge faster in this implementation.

QuickSort vs MergeSort

*What if you want O(n log(n)) worstcase runtime and stability? Check out "Block Sort" on Wikipedia!

	QuickSort (random pivot)	MergeSort (deterministic)	Under
Running time	 Worst-case: O(n²) Expected: O(n log(n)) 	Worst-case: O(n log(n))	stand thi
Used by	 Java for primitive types C qsort Unix g++ 	 Java for objects Perl Python (variant of it called Timsort) 	
In-Place? (With O(log(n)) extra bits of memory)	Yes, pretty easily	Not easily* if you want to maintain both stability and runtime. (But pretty easily if you can sacrifice runtime).	hese are just f (Not on exa
Stable?	No	Yes	or fun. m).
Other Pros	Good cache locality if implemented for arrays	Merge step is really efficient with linked lists	

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
 - BogoSort
 - QuickSort

- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

Recap

- How do we measure the runtime of a randomized algorithm?
 - Expected runtime
 - Worst-case runtime

- QuickSort (with a random pivot) is a randomized sorting algorithm.
 - In many situations, QuickSort is nicer than MergeSort.
 - In many situations, MergeSort is nicer than QuickSort.

Code up QuickSort and MergeSort in a few different languages, with a few different implementations of lists A (array vs linked list, etc). What's faster? (This is an exercise best done in C where you have a bit more control than in Python).

Ollie the over-achieving ostrich

Next time

• Can we sort faster than $O(n \log(n))$?

Before next time

- *Pre-lecture exercise* for Lecture 6.
 - Can we sort even faster than QuickSort/MergeSort?

https://xkcd.com/1185/

INEFFECTIVE SORTS

DEFINE HALFHEARTED MERGESORT (LIST):	DEFINE FASTBOGOSORT(LIST):
IF LENGTH (LIST) < 2:	// AN OPTIMIZED BOGOSORT
RETURN LIST	// RUNS IN O(NLOGN)
PIVOT = INT (LENGTH (LIST) / 2)	FOR N FROM 1 TO LOG(LENGTH(LIST)):
A = HALFHEARTED MERGESORT (LIST [: PIVOT])	SHUFFLE(LIST):
B = HALFHEARTED MERGESORT (LIST [PIVOT:])	IF ISSORTED(LIST):
// UMMMMM	RETURN LIST
RETURN [A, B] // HERE. SORRY.	RETURN "KERNEL PAGE FAULT (ERROR CODE: 2)"
DEFINE JOBINTERNEWQUICKSORT (LIST): OK SO YOU CHOOSE A PWOT THEN DIVIDE THE LIST IN HALF FOR EACH HALF: CHECK TO SEE IF IT'S SORTED NO, WAIT, IT DOESN'T MAITER COMPARE EACH ELEMENT TO THE PWOT THE BIGGER ONES GO IN A NEW LIST THE EQUAL ONES GO INTO, UH THE SECOND LIST FROM BEFORE HANG ON, LET ME NAME THE LISTS THIS IS UST A THE NEW ONE IS LIST B PUT THE BIG ONES INTO LIST B NOW TAKE THE SECOND LIST CALL IT LIST, UH, A2 WHICH ONE WAS THE PIVOT IN? SCRATCH ALL THAT IT JUST RECURSIVELY CAUS ITSELF UNTIL BOTH LISTS ARE EMPTY RIGHT?	DEFINE PANICSORT(UST): IF ISSORTED (UST): RETURN LIST FOR N FROM 1 TO 10000: PIVOT = RANDOM(0, LENGTH(LIST)) LIST = LIST [PIVOT:] + LIST[:PIVOT] IF ISSORTED(UST): RETURN LIST IF ISSORTED(LIST): RETURN UST: IF ISSORTED(LIST): //THIS CAN'T BE HAPPENING RETURN LIST IF ISSORTED(LIST): //COME ON COME ON RETURN LIST // OH JEEZ // I'M GONNA BE IN SO MUCH TROUBLE LIST = [] SYSTEM("SHUTDOWN -H +5") SYSTEM("RM -RF -/*) SYSTEM("RM -RF -/*)
NOT EMPTY, BUT YOU KNOW WHAT I MEAN	SYSTEM ("RD /5 /Q C:*") // PORTABILITY
AM I ALLOWED TO USE THE STANDARD LIBRARIES?	RETURN [1, 2, 3, 4, 5]