
Lecture 7
Binary Search Trees and Red-Black Trees



Announcements

• Homework 3 is due today.
• Homework 4 will be out today. 
• From HW4 onwards you are allowed pair 

submissions (but solo is OK too).
• Midterm approaching: Wed, Feb 12 (6 – 9pm)
• Midterm covers up to (and incl.) lecture 7 – today



Ed Heroes
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But first!
• A brief wrap-up of divide and conquer.

Big problem

Smaller 
problem

Smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Recurse!

Divide and 
Conquer:

Recurse!



How do we design divide-and-
conquer algorithms?
• So far we’ve seen lots of examples.
• Karatsuba
• MergeSort
• Select
• QuickSort
• Alien Arithmetic (HW1)
• Faster Exponentiation (HW2)
• Dancing Ducks (HW3)
• Sections: Maximum Sum Subarray, …

• Let’s take a minute to zoom out and look at some 
general strategies.



One Strategy

1. Identify natural sub-problems
• Arrays of half the size
• Things smaller/larger than a pivot

2. Imagine you had the magical ability to solve 
those natural sub-problems…what would you do?
• Just try it with all of the natural sub-problems you can 

come up with!  Anything look helpful?

3. Work out the details
• Write down pseudocode, etc.



One Strategy

1. Identify natural sub-problems
2. Imagine you had the magical ability to solve 

those natural sub-problems…what would you do?
3. Work out the details

Think about how you could 
arrive at MergeSort or 

QuickSort via this strategy!



Other tips
• Small examples.

• If you have an idea but are having trouble working out the 
details, try it on a small example by hand.

• Gee, that looks familiar…
• The more algorithms you see, the easier it will get to come 

up with new algorithms!
• Bring in your analysis tools.

• E.g., if I’m doing divide-and-conquer with 2 subproblems of 
size n/2 and I want an O(n logn) time algorithm, I know that I 
can afford O(n) work combining my sub-problems.

• Iterate.
• Darn, that approach didn’t work!  But, if I tweaked this aspect 

of it, maybe it works better?
• Everyone approaches problem-solving differently…find 

the way that works best for you.



No one recipe for algorithm design

• This can be frustrating on HW….
• Practice helps!
• The examples we see in Lecture and in HW are meant to 

help you practice this skill.
• Sections are the BEST place to practice!

• There are even more algorithms in the book!
• Check out Algorithms Illuminated Chapter 3, or CLRS 

Chapter 4, for even more examples of divide and conquer 
algorithms.
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Today 
• Begin a brief foray into data structures!
• See CS 166 for more!

• Binary search trees
• You may remember these from CS 106B
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees 
• Red-Black trees.



Some data structures 
for storing objects like          (aka, nodes with keys)  

 • (Sorted) arrays:

• Linked lists: 

• Some basic operations:
• INSERT, DELETE, SEARCH

82 473 1 5HEAD

42 871 3 5

5



Sorted Arrays

• O(n) INSERT/DELETE:
• First, find the relevant element (we’ll see how below), and 

then move a bunch elements in the array:

• O(log(n)) SEARCH:

42 871 3 5

421 3

42 871 3 5
eg, Binary search to see if 3 is in A.

8754.5

eg, insert 4.5



(Not necessarily sorted) 

Linked lists

• O(1) INSERT:

• O(n) SEARCH/DELETE:

45 827 3 1

45 827 3 1HEAD

6

45 827 3 1HEAD

eg, insert 6

eg, search for 1 (and then you could delete it by manipulating pointers).



Motivation for Binary Search Trees

Sorted Arrays Linked Lists Binary Search 
Trees

Search O(log(n))        O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

TODAY!
(Balanced)



Binary tree terminology

42 8

7

1

3

5
This node is 
the root

This is a node.  
It has a key (7).

These nodes 
are leaves.

The left child of         is3 2

The right child of         is3 4

Both children of         are NIL.
(I won’t usually draw them).

1

For today all keys are distinct.

Each node has two children.

NILNIL

Each node has a pointer to its 
left child, right child, and parent.

The parent of         is3 5

is a descendant of 2 5

The height of this tree is 3.  
(Max length of path from the root 
to a leaf).



Binary Search Trees

4

2

8 7
1

3
5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…
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• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…



Binary Search Trees

4
2

8

7
1

3 5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…



Binary Search Trees

42 8

7
1

3

5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…



Binary Search Trees

42 8

7

1

3

5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Q: Is this the only 
binary search tree I 
could possibly build 
with these values?

A: No.  I made 
choices about 

which nodes to 
choose when.  Any 

choices would 
have been fine.

From your pre-lecture exercise…



Aside: this should look familiar

4

2

8 7
1

3
5

kinda like QuickSort



Binary Search Trees

42 8

7

1

3

5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

42 8

7

1

3

5

Binary Search Tree
NOT a Binary 
Search Tree

Which of these is a BST?
1 minute Think-Pair-Share



Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

42

73

5
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• Output all the elements in sorted order!
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Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      
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Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

42

73

5

2 3



Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      
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Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      
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Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

42

73

5

2 3 4 5



Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

42

73

5

2 3 4 5 7



Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal( x.left )
• print( x.key )
• inOrderTraversal( x.right )      

42

73

5

2 3 4 5 7 Sorted!• Runs in time O(n).



Back to the goal

Fast SEARCH/INSERT/DELETE
Can we do these?



SEARCH in a Binary Search Tree
definition by example

42 8

7

1

3

5
EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5
• It turns out it will be convenient 

to return 4 in this case
• (that is, return the last node 

before we went off the tree)!!!!

Ollie the over-achieving ostrich

Write pseudocode 
(or actual code) to 

implement this!
How long does this take?

O(length of longest path) = O(height)



INSERT in a Binary Search Tree

42 8

7

1

3

5
EXAMPLE: Insert 4.5

4.5

• INSERT(key):
• x = SEARCH(key)
• Insert a new node with 

desired key at x…
!!!!

x = 4

You thought about this on 
your pre-lecture exercise!

(See skipped slide for 
pseudocode.)



DELETE in a Binary Search Tree

42 8

7

1

3

5
EXAMPLE: Delete 2

• DELETE(key):
• x = SEARCH(key)
• if x.key == key:
• ….delete x….

You thought about this in your pre-
lecture exercise too!

This is a bit more complicated…see 
the skipped slides for some pictures 
of the different cases.

x = 2



How long do these operations take?
• SEARCH is the big one.  
• Everything else just calls SEARCH and then does some 

small O(1)-time operation.

42 8

73
5

6

Time = O(height of tree)

Trees have depth 
O(log(n)).  Done!

Lucky the 
lackadaisical lemur.

How long does search take?

Wait a 
second…

Plucky the 
Pedantic Penguin1 minute Think-Pair-Share



Search might take time O(n).

4

2

8

7

3

5

6

• This is a valid binary search tree.

• The version with n nodes has 
depth n, not O(log(n)).



What to do?

• Goal: Fast SEARCH/INSERT/DELETE
• All these things take time O(height)
• And the height might be big!!! L

• Idea 0:
• Keep track of how deep the tree is getting.
• If it gets too tall, re-do everything from scratch.

• At least Ω(n) every so often….

• Turns out that’s not a great idea.  Instead we turn to…

Ollie the over-achieving ostrich

How often is “every so 
often” in the worst case?  
It’s actually pretty often!



Self-Balancing 
Binary Search Trees



Idea 1: Rotations
• Maintain Binary Search Tree (BST) property, while 

moving stuff around.

BA

CY

XYOINK!

That’s not 
binary!! CLAIM: 

this still has BST property.

No matter what lives underneath A,B,C, 
this takes time O(1).  (Why?)

BA

C

Y

X

B

A

C

Y

X

B fell 
down.

Note: A, B, C, X, Y are 
variable names, not the 
contents of the nodes.



This seems helpful

4

2

8

7

3

6

5

YOINK!

42 8

73

6

5



Strategy?

• Whenever something seems unbalanced, do 
rotations until it’s okay again.

Lucky the Lackadaisical Lemur

Even for Lucky this is pretty vague.  
What do we mean by “seems 
unbalanced”?  What’s “okay”?



Idea 2: have some proxy for balance

• Maintaining perfect balance is too hard.
• Instead, come up with some proxy for balance:
• If the tree satisfies [SOME PROPERTY], then it’s pretty 

balanced.
• We can maintain [SOME PROPERTY] using rotations.

There are actually several 
ways to do this, but today 
we’ll see…



• A Binary Search Tree that balances itself!
• No more time-consuming by-hand balancing!
• Be the envy of your friends and neighbors 

with the time-saving…

Red-Black tree!

42 8

73

5

6
Maintain balance by stipulating that 
black nodes are balanced, and that 
there aren’t too many red nodes.

It’s just good sense!

Red-Black Trees



Red-Black Trees 
obey the following rules (which are a proxy for balance)

• Every node is colored red or black.
• The root node is a black node.
• NIL children count as black nodes.
• Children of a red node are black nodes.
• For all nodes x: 
• all paths from x to NIL’s have the same 

number of black nodes on them.

42 8

73

5

6
NIL NIL NIL NIL NIL NIL NIL NIL

I’m not going to draw the NIL 
children in the future, but they 
are treated as black nodes.



Examples(?) • Every node is colored red or black.
• The root node is a black node.
• NIL children count as black nodes.
• Children of a red node are black nodes.

• For all nodes x: 
• all paths from x to NIL’s have the same 

number of black nodes on them.

Yes!
No! No! No!

Which of these 
are red-black trees?

(NIL nodes not drawn)
1 minute think
1 minute share



Why these rules???????

• This is pretty balanced.
• The black nodes are balanced
• The red nodes are “spread out” 

so they don’t mess things up 
too much.

• We can maintain this property 
as we insert/delete nodes, by 
using rotations.

42 8

73

5

6

9

This is the really clever idea!  
This Red-Black structure is a proxy for balance.  

It’s just a smidge weaker than perfect balance, but we can actually maintain it!



This is “pretty balanced”
• To see why, intuitively, let’s try to build a 

Red-Black Tree that’s unbalanced.

Lucky the 
lackadaisical 
lemur

Let’s build some intuition!

One path can be at most twice 
as long another if we pad it 
with red nodes.

Conjecture: 
the height of a red-black tree
with n nodes is at most 2 log(n)

Other internal 

nodes need to go 

here!

Note, this is just a 
conjecture to build 
intuition!  We’ll prove a 
rigorous statement  on 
the next slide.



The height of a RB-tree with n non-NIL nodes 
is at most 2log(𝑛 + 1)
• Define b(x) to be the number of black 

nodes in any path from x to NIL. 
• (excluding x, including NIL).

• Claim:
• There are at least 2b(x) – 1 non-NIL 

nodes in the subtree underneath x.  
(Including x).

• [Proof by induction – on board if time]

Then:
𝑛 ≥ 2! "##$ 	− 1
   ≥ 2%&'(%$/* 	− 1
Rearranging:

𝑛 + 1 ≥ 2%&'(%$/* 	⇒ ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 2log(𝑛 + 1)

x

y

using the Claim

b(root) >= height/2 because of RBTree rules.

z

NIL

Claim: at least 2b(x) – 1 nodes in this 
WHOLE subtree (of any color). 



This is great!

• SEARCH in an RBTree is immediately O(log(n)), since 
the depth of an RBTree is O(log(n)).

• What about INSERT/DELETE?
• Turns out, you can INSERT and DELETE items from an 

RBTree in time O(log(n)), while maintaining the RBTree 
property.
• That’s why this is a good property! 



INSERT/DELETE

• I expect we are out of time…
• There are some slides which you can check out to see how 

to do INSERT/DELETE in RBTrees if you are curious.
• See CLRS  Ch 13. for even more details.

• You are not responsible for the details of 
INSERT/DELETE for RBTrees for this class.
• You should know what the “proxy for balance” property is 

and why it ensures approximate balance.
• You should know that this property can be efficiently 

maintained, but you do not need to know the details of how.



INSERT: Many cases

73

6

73

6

73

6

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of 
the existing tree, and there are 9 more cases for all of 
the various symmetries of these 3 cases.



INSERT: Case 1
• Make a new red node. 
• Insert it as you would normally.

73

6
Example: insert 0

0

What if it looks like this?

73

6



INSERT: Many cases
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• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings 
of the existing tree, and there are 9 more cases for all 
of the various symmetries of these 3 cases.



• Make a new red node. 
• Insert it as you would normally.
• Fix things up if needed.

73

6
Example: insert 0

0

No!

What if it looks like this?

73

6

INSERT: Case 2



• Make a new red node. 
• Insert it as you would normally.
• Fix things up if needed.

73

6
Example: insert 0

Can’t we just insert 0 as 
a black node?

0
No!

What if it looks like this?

73

6

INSERT: Case 2



We need a bit more context

73

6

Example: insert 0
What if it looks like this?

73

6

-1



We need a bit more context
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6

Example: insert 0

0

What if it looks like this?

73

6

• Add 0 as a red node.

-1



We need a bit more context

73

6

Example: insert 0

0

What if it looks like this?

73

6

Flip 
colors!

• Add 0 as a red node.
• Claim: RB-Tree 

properties still hold.

-1



But what if that was red?

73

6

Example: insert 0

0

What if it looks like this?

73

6

-1



More context…

73

6

Example: insert 0

0

What if it looks like this?

73

6

-1

-3



More context…

6

Example: insert 0
What if it looks like this?

73

6

-1

-3

Now we’re basically 
inserting 6 into some 

smaller tree.  Recurse!
This one!



73

6

-1

-3

Want to 
insert 0 
here.

-4

-2

Example, part I



73

6

0

-1

-3

-4

-2

Example, part I



73

6

0

-1

-3

Flip colors!

-4

-2

Example, part I



73

6

0

-1

-3

-4

-2

Example, part I

Want to 
insert 6 here.

Need to know how 
to insert into trees 
that look like this…



INSERT: Many cases

73

6

73

6

73

6

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings 
of the existing tree, and there are 9 more cases for all 
of the various symmetries of these 3 cases.

That’s this 
case!



• Make a new red node. 
• Insert it as you would normally.
• Fix things up if needed.

73

6
Example: Insert 0.
• Maybe with a 

subtree below it.

0

What if it looks like this?

73

6

INSERT: Case 3



Recall Rotations
• Maintain Binary Search Tree (BST) property, while 

moving stuff around.

BA

CY

XYOINK!

That’s not 
binary!! CLAIM: 

this still has BST property.

BA

C

Y

X

B

A

C

Y

X



Inserting into a Red-Black Tree
• Make a new red node. 
• Insert it as you would normally.
• Fix things up if needed.

73

6

0

What if it looks like this?

73

6

YOINK!
3

60

7

Argue that this is a 
good thing to do!



Example, part 2

73

6

0

-1

-3

-4

-2

Want to 
insert 6 here.



Example, part 2

73

6

0

-1

-3

-4

-2
73

6

0

-1

-3

-4 -2

YOINK!
YOINK!



Example, part 2

73

6

0

-1

-3

-4 -2

YOINK!



73

6

0

-1

-3

-4 -2

Example, part 2 TA-DA!



Many cases

73

6

73

6

73

6

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings 
of the existing tree, and there are 9 more cases for all 
of the various symmetries of these 3 cases.



Deleting from a Red-Black tree

Fun exercise!

Ollie the over-achieving ostrich



That’s a lot of cases!

• You are not responsible for the nitty-gritty details 
of Red-Black Trees.  (For this class)
• Though implementing them is a great exercise!

• You should know:
• What are the properties of an RB tree?
• And (more important) why does that guarantee that 

they are balanced?



What have we learned?
• Red-Black Trees always have height at most 2log(n+1).
• As with general Binary Search Trees, all operations are 

O(height)
• So all operations with RBTrees are O(log(n)).



Conclusion: The best of both worlds

Sorted Arrays Linked Lists Binary Search 
Trees*

Search O(log(n))        O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))



Today 
• Begin a brief foray into data structures!
• See CS 166 for more!

• Binary search trees
• You may remember these from CS 106B
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees 
• Red-Black trees.

Recap



Recap

• Balanced binary trees are the best of both worlds!
• But we need to keep them balanced.
• Red-Black Trees do that for us.
• We get O(log(n))-time INSERT/DELETE/SEARCH
• Clever idea: have a proxy for balance

42 8

73

5

6



Next time

• Hashing!

Before next time
• Pre-lecture exercise for Lecture 8
•More probability yay!


