
CS 161 (Stanford, Winter 2026) Homework 2

Style guide and expectations: We do NOT accept handwritten solutions. Please see
the “Homework” part of the “Resources” section on the webpage for guidance on what we
look for in homework solutions. We will grade according to these standards. You should
cite all sources you used outside of the course material. Please do not distribute this
material on any public forum.
What we expect: Make sure to look at the “We are expecting” blocks below each
problem to see what we will be grading for in each problem!

1 Exercise: Solving Recurrence Relations

1.1 (4 pt.)

State and prove a tight bound for the following recurrence relation:

T (n) = 6T (n/3) + n3

[We are expecting: A brief but formal justification, likely citing a well-known theorem dis-
cussed in class.]

1.2 (4 pt.)

Use a recursion tree to give an upper bound on the following recurrence relation:

T (n) = 4T (n/5) + n

[We are expecting: A drawing of a recursion tree including a justification for the weight
(i.e. amount of work involved) of the entire tree based on the weight at each level and the
number of levels. You are welcome to hand-draw and upload an image of your recursion tree
(for LaTeX, use includegraphics)].

2 Exercise: Big O via Induction

The Fibonacci numbers are a famous sequence defined by

F (0) = 0, F (1) = 1, F (n + 2) = F (n) + F (n + 1) for n ≥ 0.

For example, the first few Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

1



In this problem, we will use induction to get a sense for how quickly the Fibonacci numbers
grow.

(a) (4 pt.) Show that F (n) = O(2n).

(b) (4 pt.) Show that F (n) = Ω(1.5n).

(c) (0 pt.) Show that F (n) = Θ(ϕn), where

ϕ =
1 +
√
5

2

is the golden ratio.

[We are expecting: For part (a) and (b), a formal proof by induction. Make sure your
base case, inductive step, and conclusion are clearly identifiable from your proof. For part
(c), nothing! This part is optional, and significantly harder than the previous two parts,
but it may be rewarding to characterize the precise asymptotic growth rate of the Fibonacci
numbers.]

3 Exercise: Modified MergeSort

Let’s see how changing the size of the subproblems affects the runtime of MergeSort.

(a) (3 pt.) Your friend gives you this modified version of MergeSort, and he claims that
it runs asymptotically better than the version of MergeSort we showed in class. Is he
correct in his claim? Write down a recurrence relation and runtime for this version of
MergeSort. (Merge is the same as we saw in lecture)

(b) (4 pt.) Inspired by your friend’s idea, Pepper the Peculiar Penguin (Plucky’s little
sibling) decides to write the following version of MergeSort:

2



Pepper says that this version of MergeSort is faster than the version we saw in lecture.
Pepper’s argument is as follows:

“This modified MergeSort splits the array into n-subproblems of size O(1)
immediately. We therefore don’t waste time with the ’log(n) levels’ worth of
splitting. Additionally, in this modified sort, we’re calling Merge on a bunch
of sublists of size 1. Each merge would therefore take time

O(size of sublist A) +O(size of sublist B) = O(1) +O(1) = O(1)

That’s constant time per merge! Yay! We now have an algorithm that should
sort the array A in O(n) time-n merges of O(1) time each.”

Sadly, Pepper’s analysis is wrong. It was a good try, though!

Let’s help a penguin out: Tell Pepper what her mistake was and explain what the true
runtime of this modified MergeSort truly is.

[We are expecting: For part a), a recurrence relation for MergesortThirds and an expla-
nation of its runtime. For part b), an explanation of Pepper’s incorrect reasoning and an
explanation of the true runtime of MergesortN]

4 Faster Exponentiation

This problem will investigate methods for calculating exponents of the form ab where b is a
large integer.

3



(a) (1 pt.) How many multiplications are needed to compute ab by multiplying a by itself
b times?

(b) (3 pt.) Come up with a divide and conquer algorithm to calculate ab using O(log b)
multiplications.

(c) (3 pt.) Fermie the Ferret, a visitor to the CS 161 town, claims that they came up
with a truly marvelous algorithm that computes ab using only log log b multiplications.
Sadly, Fermie’s time in town is too short to tell you how the algorithm works. Explain
why Fermie must have made a mistake.

Hint: Think inductively about the largest power you can compute using n multiplica-
tions.

Bonus: (no extra points) Can you make your argument work to rule out O(log log b)
multiplications, not just log log b?

[We are expecting: For part (a), a number. For part (b), an algorithm in pseudocode and
an explanation of why it requires O(log b) multiplications. For part (c), an explanation of
why it is impossible to compute ab using log log b multiplications.]

4



5 Quagga Trouble

You stumble across a secret zoo where questionable experiments have been taking place. To
your astonishment, you find a field full of what appear to be quaggas!

Unfortunately, you quickly see that the zebras at this zoo have escaped their field, run through
some mud, and are mingling with the quaggas. Your goal in this problem is to distinguish all
quaggas from zebras.

Not being an animal expert, you can’t tell the difference between a quagga and a muddy
zebra. However, you can gather a pair of animals and ask them to evaluate each other.
Zebras, being herd animals, can always tell if another animal is a zebra or not, and will let you
know. These quaggas, however, have just been rescued from over a century of extinction,
and are too new to the world to give you an accurate response. For example, if Zamantha
and Zathaniel the zebras evaluate each other, they will both say that the other is a zebra.
But if Zamantha and Quincy the quagga evaluate each other, then Zamantha will say that
Quincy is a quagga, but Quincy may say either that Zamantha is a zebra or a quagga. We
will refer to one of these interactions as a "quagga evaluation". The outcomes of quagga
evaluations are as follows:

Animal A Animal B A says (about B) B says (about A)
Zebra Zebra Zebra Zebra
Zebra Quagga Quagga Either

Quagga Zebra Either Quagga
Quagga Quagga Either Either

Suppose that there are n animals in the zoo, and that strictly more than n/2 of them are
zebras.

(a) (4 pt.) Give an algorithm that uses O(n2) quagga evaluations and identifies all of the
quaggas.

5



[We are expecting: A description of the procedure (either in pseudocode or very clear
English), with a brief explanation of what it is doing and why it works.]

(b) (8 pt.) ∗ Now let’s start designing an improved algorithm. The following procedure will
be a building block in our algorithm—make sure you read the requirements carefully!

Suppose that n is even. Show that, using only n/2 quagga evaluations, you can reduce
the problem to the same problem with less than half the size. That is, give a procedure
that does the following:

• Input: A population of n animals (zebras and quaggas), where n is even, so that
there are strictly more than n/2 zebras in the population.

• Output: A population of m animals, for 0 < m ≤ n/2, so that there are strictly
more than m/2 zebras in the population.

• Constraint: The number of quagga evaluations used by your procedure is no more
than n/2.

[We are expecting: A description of this procedure (either in pseudocode or very clear
English), and rigorous argument that it satisfies the Input, Output, and Constraint
requirements above.]

(c) (0 pt.) [This problem is NOT REQUIRED, but you may assume it for future
parts.] Extend your argument for odd n. That is, given a procedure that does the
following:

• Input: A population of n animals, where n is odd, so that there are strictly more
than n/2 zebras in the population.

• Output: A population of m animals, for 0 < m ≤ dn/2e, so that there are strictly
more than m/2 zebras in the population.

• Constraint: The number of quagga evaluations used by your procedure is no more
than bn/2c.

(?) For all of the following parts, you may assume that the procedures in parts (b) and (c)
exist even if you have not done those parts.

(d) (4 pt.) Using the procedures from parts (b) and (c), design a recursive algorithm that
uses O(n) quagga evaluations and finds a single zebra.

[We are expecting: A description of the procedure (either in pseudocode or very clear
English).]

(e) (6 pt.) Prove formally, using induction, that your answer to part (d) is correct.

[We are expecting: A formal argument by induction. Make sure you explicitly state
the inductive hypothesis, base case, inductive step, and conclusion.]

∗This is the trickiest part of the problem set! You may have to think a while.

6



(f) (6 pt.) Prove that your algorithm in part (d) uses O(n) quagga evaluations. If you
find that you are working with floors and ceilings, you may ignore them (i.e. assume
that the quantity is an integer).

[We are expecting: A formal argument. Note: do this argument “from scratch," do
not use the Master Theorem.]

(g) (2 pt.) Give a procedure to find all quaggas using O(n) quagga evaluations.

[We are expecting: An informal description of the procedure. ]

7


	Exercise: Solving Recurrence Relations
	4
	4

	Exercise: Big O via Induction
	Exercise: Modified MergeSort
	Faster Exponentiation
	Quagga Trouble

