
CS 161
Design and Analysis of Algorithms

Lecture 1:

Logistics, introduction, and multiplication!

Slides originally created by Mary Wootters

The big questions

• Who are we?
• Professor, TAs, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?

• Logistics?

• Can we multiply integers?
• And can we do it quickly?

Who are we?
• Professors:

• Ellen Vitercik and Moses Charikar

• Course manager:

• Amelie Byun

• Awesome CAs!
• Ziyi Ding (head CA)
• Illia Shkirko
• Karan Bhasin
• Michael Rybalkin
• Mingwei Yang
• Nikil Selvam
• Ruiquan Gao
• Simon Kim
• Will Fang
• Yash Dave
• Zoe Wefers
• Auddithio Nag (ACE CA)

Ellen Moses

Amelie

Illia Karan Michael Mingwei Nikil

Simon Will Yash ZoeRuiquan

Auddithio

Ziyi

Why are we here?

• Moses and I are here because we love algorithms

• Why are you here?
• Algorithms are fundamental.

• Algorithms are useful.

• Algorithms are fun!

• CS161 is a required course.

Algorithms: Fundamental & useful

Language models (CS224N)

Robotics (CS237A) Security (CS155)

Recommender
systems (CS246)

Cryptography (CS255)

Computational
biology (CS262)

As inputs get bigger and bigger,
having good algorithms is critical!

The
Algorithmic

Lens

Algorithms are fun!

• Algorithm design is both an art and a science.

• Many surprises!

• Many exciting research questions!

What’s going on?

• Course goals/overview

• Logistics

Course goals

• The design and analysis of algorithms
• These go hand-in-hand

• In this course you will learn:
• Design: Flesh out an “algorithmic toolkit”

• Analysis: Learn to think analytically about algorithms

• Communication: Learn to communicate clearly about
algorithms

Roadmap

Graphs!

Asymptotic
Analysis

Dynamic
ProgrammingGreedy Algs

MIDTERM

The
Future!

More detailed schedule on the website!

Our guiding questions:

Does it work?
Is it fast?

Can I do better?

Our internal monologue…

Does it work?
Is it fast?

Can I do better?

Plucky the
Pedantic Penguin

Lucky the
Lackadaisical Lemur

Detail-oriented
Precise

Rigorous

Big-picture
Intuitive

Hand-wavey

Okay, this is basically the
same as last time. If we just
do the same thing again, it
should probably work and

run pretty fast.

What exactly do we mean
by better? And what

about that corner case?
Shouldn’t we be zero-

indexing?

Both sides are necessary!

Course elements and resources

• Course website:
• stanford-cs161.github.io/winter2026

• Lectures

• Homework

• Exams

• Office hours, Sections, and Ed

• Here (STLC 111), M/W, 1:30-2:50

• Resources available:
• Slides, Videos, Book, IPython notebooks

Lectures

IPython notebooks
have implementation
details that slides may

omit.

Slides are the
slides from

lecture.

Videos from
lecture are
available!

Textbook (and occasional
hand-outs) have mathy
details that slides may

omit

How to get the most out of lectures
• During lecture:

• Show up or tune in, ask questions.
• Engage with in-class questions.

• Before lecture:
• Do pre-lecture exercises on the website.

• After lecture:
• Go through the exercises on the slides.

• Do the reading
• either before or after lecture, whatever works best for you.
• do not wait to “catch up” the week before the exam.

Siggi the Studious Stork
(recommended exercises)

Ollie the Over-achieving Ostrich
(challenge questions)

Think-Pair-Share
Terrapins (in-class
questions)

Homework!

• Pre-req quiz: Self-graded w/ solutions on course page

• Weekly assignments HW1-HW8

• Due Wednesdays at 11:59pm, HW1 due Jan 14

• Homeworks 1-3 will be individual submissions
• Means you should type up their own homework

• From Homework 4 onwards:
• Paired submissions are permitted
• You can make a single submission for groups of ≤2

• We only accept typed submissions. Handwritten
submissions lose points on homework 1, and receive
ZERO points from homework 2 onwards.

Late days

• You have six late days to use on HW1–HW8
• See website for more details

• LATE DAYS ARE FOR EMERGENCIES.
• Don’t ask us for an extension if you have an emergency.

That’s what late days are for.

Textbook

• Algorithms Illuminated, Vols 1, 2 and 3 by Tim
Roughgarden

• Additional resources at algorithmsilluminated.org

• We may also refer to to the following (optional) books:

”CLRS”: Introduction to
Algorithms by Cormen,

Leiserson, Rivest, and Stein.
Available FOR FREE ONLINE
through the Stanford library.

“Algorithm Design” by
Kleinberg and Tardos

Exams

• Two exams
• Midterm: Wednesday 2/11, 6-9pm
• Final Exam: Wednesday 3/18, 3:30-6:30pm

• We will not have a scheduled alternate final.
• If you know you can’t take the final, you should drop this

class and take it in a different quarter.

• We are participating in the AIWG proctoring pilot
• See website for details

Sections

• Taught by your amazing CAs and will
• recap lecture
• show you how to apply the ideas you learned in lecture
• can occasionally cover new material

• We’ll sharing locations & times in next few days
• Go to whichever fits schedule

• Sections are as “mandatory” as lectures:
• we will not track attendance, but
• sections (practice, practice, practice) are the best way to

learn the material in CS 161
• also, a good place to find community

Review sessions

• Friday, 1:30-2:50, STLC 111

• This week: review of induction and week 1 material

• Future weeks: reviews before exams

ACE Section

• CS161ACE: 1-unit supplementary section for CS161
• Algorithm design + problem-solving practice

• Meets Thursdays 3:00–4:50 PM

• Attendance mandatory

• Still attend CS161 lectures and regular sections

• Apply by Jan 9, 2026; waitlist after deadline

• Questions: ACE CA Auddithio Nag
(aunag@stanford.edu)

Talk to us!

• Ed discussion forum:
• Link on top of the course website

• Course announcements will be posted there

• Discuss material with TAs and your classmates

• Office hours:
• See course website for schedule

• They start next week

Course elements and resources

• Course website:
• stanford-cs161.github.io/winter2026

• Lectures

• Homework

• Exams

• Office hours, Sections, and Ed

Course Policies

• Course policies are listed on the website.
• Collaboration Policy, Academic Honesty, ...

• Read them and adhere to them.

Bug bounty!
• We hope all PSETs and slides will be bug-

free.

• Howover, we sometmes maek typos.

• If you find a typo (that affects
understanding*) on slides, IPython
notebooks, Section material or PSETs:
• Let us know! (Post on Ed or tell a CA).
• The first person to catch a serious bug might

get a good citizenship bonus point.
• Good citizenship points: we might consider

bumping letter grades for people who end up
near boundaries and have lots of good
citizenship points.

*So, typos lke thees onse don’t count, although please
point those out too. Typos like 2 + 2 = 5 do count, as does
pointing out that we omitted some crucial information.

Bug Bounty Hunter

For CGOE Students

• There will be some online office hours.

• One of the sections will be recorded.

• See the website for more details! (coming soon)

OAE forms

• Please send OAE forms to

cs161-staff-win2526@cs.stanford.edu

• If you plan to use your OAE-approved exam
accommodations for a specific exam:

Must send letter 10 days before exam date

Feedback

• We will have high-resolution feedback throughout
the course (subset of you randomly asked each
week, starting week 2).

• Please help us improve the course!

Everyone can succeed in this class!

1. Work hard

2. Work smart

3. Ask for help

The big questions

• Who are we?
• Professor, TA’s, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?

• Logistics?

• Can we multiply integers?
• And can we do it quickly?

Today’s goals

• Design: Flesh out an “algorithmic toolkit”

• Analysis: Think analytically about algorithms

• Communication: Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication

• Algorithmic Technique:
• Divide and conquer

• Algorithmic Analysis tool:
• Intro to asymptotic analysis

Let’s start at the beginning

Etymology of “Algorithm”
• Al-Khwarizmi was a 9th-century scholar from Uzbekistan
• Wrote a book about how to multiply with Arabic numerals
• His ideas came to Europe in the 12th century

Dixit algorizmi

(so says Al-Khwarizmi)

• Originally, “Algorisme” [old French] referred to
just the Arabic number system, but eventually it
came to mean “Algorithm” as we know today.

This was kind of a big deal

XLIV × XCVII = ?
44
97x

Integer Multiplication

44
97x

Integer Multiplication

1234567895931413
4563823520395533x

Integer Multiplication

1233925720752752384623764283568364918374523856298
4562323582342395285623467235019130750135350013753x

???

n

About 𝑛2 one-digit operations

(How many one-digit operations?)

Think-pair-share Terrapins

Plucky the
Pedantic Penguin

At most 𝑛2 multiplications,
and then at most 𝑛2 additions (for carries)
and then I have to add n different 2n-digit numbers…

How fast is the grade-school
multiplication algorithm?

Big-Oh Notation

• We say that Grade-School Multiplication

 “runs in time O(n2)”

• Formal definition coming Wednesday!

• Informally, big-Oh notation tells us how the running
time scales with the size of the input.

Implemented in Python, on my laptop
highly non-optimized

Looks like it’s roughly
Tlaptop(n) = 0.0063 n2 – 0.5 n + 12.7 ms...

The runtime “scales like” n2

Implemented by hand

Some other
quadratic
function of n

Tlaptop(n) ≈
0.0063 n2 – 0.5 n + 12.7 ms

The runtime still “scales like” n2

Why is big-Oh notation meaningful?

≈ .0063𝑛2

≈
𝑛1.6

10
+ 100

Wizard’s algorithm

Let n get bigger…

≈ .0063𝑛2

≈
𝑛1.6

10
+ 100

T
im

e
(m

s)

Wizard’s algorithm

Take-away

• An algorithm that runs in time O(n1.6) is “better”
than an an algorithm that runs in time O(n2).

• So the question is…

Can we do better?

𝑛

𝑛2

Can we multiply n-digit integers
faster than 𝑂 𝑛2 ?

Let’s dig in to our algorithmic toolkit…

Divide and conquer
Break problem up into smaller (easier) sub-problems

Big problem

Smaller
problem

Smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Divide and conquer for multiplication

1234 × 5678

Break up an integer:

1234 = 12×100 + 34

= (12×100 + 34) (56×100 + 78)
= (12 × 56)10000 + (34 × 56 + 12 × 78)100 + (34 × 78)

1 2 3 4

One 4-digit multiply Four 2-digit multiplies

More generally

1 2 3 4

One n-digit multiply Four (n/2)-digit multiplies

Break up an n-digit integer:

Suppose n is even

Divide and conquer algorithm
not very precisely…

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
𝑛

2 + 𝑏

• Write 𝑦 = 𝑐 10
𝑛

2 + 𝑑

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑:
• ac = Multiply(a, c), etc..

• Add them up to get 𝑥𝑦:
• xy = ac 10n + (ad + bc) 10n/2 + bd

Multiply(𝑥, 𝑦):

a, b, c, d are
n/2-digit numbers

Base case: I’ve memorized my
1-digit multiplication tables…

x,y are n-digit numbers (Assume n is a power of 2…)

Siggi the Studious Stork

Make this pseudocode
more detailed! How

should we handle odd n?
How should we implement

“multiplication by 10n”?

See the Lecture 1 Python notebook for actual code!

Think-Pair-Share

• We saw that this 4-digit multiplication problem
broke up into four 2-digit multiplication problems

• If you recurse on those 2-digit multiplication
problems, how many 1-digit multiplications do you
end up with total?

1234 × 5678

Recursion Tree

4 digits

2 digits

1
digit

2 digits 2 digits 2 digits

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

16 one-digit
multiplies!

What is the running time?

• Better or worse than the grade school algorithm?

• How do we answer this question?
1. Try it.

2. Try to understand it analytically.

1. Try it.
Check out the Lecture 1 IPython Notebook

Conjectures about
running time?

Maybe one implementation
is slicker than the other?

Maybe if we were to run it
to n=10000, things would

look different.

Doesn’t look too good
but hard to tell…

Something funny is happening at powers of 2…

2. Try to understand the running
time analytically

• Proof by meta-reasoning:

It must be faster than the grade school
algorithm, because we are learning it in

an algorithms class.

Not sound logic!

Plucky the Pedantic Penguin

2. Try to understand the running
time analytically

Think-Pair-Share:
• We saw that multiplying 4-digit numbers resulted in 16

one-digit multiplications.

• How about multiplying 8-digit numbers?

• What do you think about n-digit numbers?

Recursion Tree

8 digits

4 digits

2
digit

4 digits 4 digits 4 digits

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

64 = 43

one-digit
multiplies!

1

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

1

2. Try to understand the running
time analytically

Claim:

We end up doing about n2 one-digit
multiplications

⇒

The running time of this algorithm is

AT LEAST n2 operations.

There are n2 1-digit problems

1 problem
of size n

4 problems
of size n/2

4t problems
of size n/2t

____ problems
of size 1

…

• If you cut n in half
log2(𝑛) times,
you get down to 1.

• So at level
 t = log2(𝑛)
 we get…

 4log2 𝑛 =

𝑛log2 4 = 𝑛2

problems of size 1.

…

Note: this is just a

cartoon – I’m not
going to draw all 4t
circles!

That’s a bit disappointing
All that work and still (at least) 𝑂 𝑛2 …

𝑛

𝑛2

But wait!!

Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

• If only we could recurse on three things instead of four…

Need these three things

Karatsuba integer multiplication

• Recursively compute these THREE things:
• ac

• bd

• (a+b)(c+d)
(a+b)(c+d) = ac + bd + bc + ad

Subtract these off
get this

• Assemble the product:

How would this work?

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
𝑛

2 + 𝑏 and 𝑦 = 𝑐 10
𝑛

2 + 𝑑

• ac = Multiply(a, c)

• bd = Multiply(b, d)

• z = Multiply(a+b, c+d)

• xy = ac 10n + (z – ac - bd) 10n/2 + bd

• Return xy

Multiply(𝑥, 𝑦):

a, b, c, d are
n/2-digit numbers

x,y are n-digit numbers
(Still not super precise, see IPython
notebook for detailed code. Also,

still assume n is a power of 2.)

What’s the running time?

1 problem
of size n

3 problems
of size n/2

3t problems
of size n/2t

____ problems
of size 1

…

• If you cut n in half
log2(𝑛) times, you get
down to 1.

• So at level
 t = log2(𝑛)
 we get…

3log2 𝑛 = 𝑛log2 3 ≈ 𝑛1.6

problems of size 1.

𝑛1.6

We aren’t accounting for the
work at the higher levels!

But we’ll see later that this
turns out to be okay.

Note: this is just a

cartoon – I’m not
going to draw all 3t
circles!

…

This is much better!

𝑛2

𝑛1.6

𝑛

We can even see it in real life!

Can we do better?
• Toom-Cook (1963): instead of breaking into three n/2-

sized problems, break into five n/3-sized problems.
• Runs in time O 𝑛1.465

• Schönhage–Strassen (1971):
• Runs in time O(𝑛 log 𝑛 log log 𝑛)

• Furer (2007)
• Runs in time 𝑛 log 𝑛 ⋅ 2O(log∗ 𝑛)

• Harvey and van der Hoeven (2019)
• Runs in time O(𝑛 log 𝑛)

Ollie the Over-achieving Ostrich

Try to figure out how to break
up an n-sized problem into five
n/3-sized problems! (Hint: start
with nine n/3-sized problems).

Siggi the Studious Stork

Given that you can break an
n-sized problem into five

n/3-sized problems, where
does the 1.465 come from?

[This is just for fun, you
don’t need to know

these algorithms!]

Today’s goals

• Think analytically about algorithms

• Flesh out an “algorithmic toolkit”

• Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication

• Algorithmic Technique:
• Divide and conquer

• Algorithmic Analysis tool:
• Intro to asymptotic analysis

The big questions

• Who are we?
• Professor, TA’s, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?

• Logistics?

• Can we multiply integers?
• And can we do it quickly?

• Wrap-up

Wrap up

• stanford-cs161.github.io/winter2026

• Algorithms are fundamental, useful and fun!

• In this course, we will develop both algorithmic
intuition and algorithmic technical chops

• Karatsuba Integer Multiplication:
• You can do better than grade school multiplication!

• Example of divide-and-conquer in action

• Informal demonstration of asymptotic analysis

• Sorting!

• Asymptotics and (formal) Big-Oh notation

• Divide and Conquer some more

Next time

BEFORE Next time
• Pre-lecture exercise! On the course website!

• Check out Ed!

	Slide 1: CS 161 Design and Analysis of Algorithms
	Slide 2: The big questions
	Slide 3: Who are we?
	Slide 4: Why are we here?
	Slide 5: Algorithms: Fundamental & useful
	Slide 6: Algorithms are fun!
	Slide 7: What’s going on?
	Slide 8: Course goals
	Slide 9: Roadmap
	Slide 10: Our guiding questions:
	Slide 11: Our internal monologue…
	Slide 12: Course elements and resources
	Slide 13: Lectures
	Slide 14: How to get the most out of lectures
	Slide 15: Homework!
	Slide 16: Late days
	Slide 17: Textbook
	Slide 18: Exams
	Slide 21: Sections
	Slide 22: Review sessions
	Slide 23: ACE Section
	Slide 24: Talk to us!
	Slide 25: Course elements and resources
	Slide 26: Course Policies
	Slide 29: Bug bounty!
	Slide 30: For CGOE Students
	Slide 31: OAE forms
	Slide 32: Feedback
	Slide 33: Everyone can succeed in this class!
	Slide 34: The big questions
	Slide 35: Today’s goals
	Slide 36: Let’s start at the beginning
	Slide 37: Etymology of “Algorithm”
	Slide 38: This was kind of a big deal
	Slide 39: Integer Multiplication
	Slide 40: Integer Multiplication
	Slide 41: Integer Multiplication
	Slide 42: Big-Oh Notation
	Slide 43: Implemented in Python, on my laptop
	Slide 44: Implemented by hand
	Slide 45: Why is big-Oh notation meaningful?
	Slide 46: Let n get bigger…
	Slide 47: Take-away
	Slide 48: Can we do better?
	Slide 49: Let’s dig in to our algorithmic toolkit…
	Slide 50: Divide and conquer
	Slide 51: Divide and conquer for multiplication
	Slide 52: More generally
	Slide 53: Divide and conquer algorithm not very precisely…
	Slide 54: Think-Pair-Share
	Slide 55: Recursion Tree
	Slide 56: What is the running time?
	Slide 57: 1. Try it.
	Slide 58: 2. Try to understand the running time analytically
	Slide 59: 2. Try to understand the running time analytically
	Slide 60: Recursion Tree
	Slide 61: 2. Try to understand the running time analytically
	Slide 63: There are n2 1-digit problems
	Slide 64: That’s a bit disappointing All that work and still (at least) cap O open paren n squared , , close paren …
	Slide 65: Divide and conquer can actually make progress
	Slide 66: Karatsuba integer multiplication
	Slide 67: How would this work?
	Slide 68: What’s the running time?
	Slide 69: This is much better!
	Slide 70: We can even see it in real life!
	Slide 71: Can we do better?
	Slide 72: Today’s goals
	Slide 73: The big questions
	Slide 74: Wrap up
	Slide 75: Next time

