CS 161
Design and Analysis of Algorithms

Lecture 1:

Logistics, introduction, and multiplication!

Slides originally created by Mary Wootters

The big questions

* Who are we?
* Professor, TAs, students?

* Why are we here?
* Why learn about algorithms?

* What is going on?
 What is this course about?
* Logistics?

e Can we multiply integers?
 And can we do it quickly?

Who are we?

e Professors:
* Ellen Vitercik and Moses Charikar

* Course manager:
* Amelie Byun

Amelie

Mingwei

Auddithio

Awesome CAs!

Ziyi Ding (head CA)
lllia Shkirko

Karan Bhasin
Michael Rybalkin
Mingwei Yang
Nikil Selvam
Ruiquan Gao
Simon Kim

Will Fang

Yash Dave

Zoe Wefers
Auddithio Nag (ACE CA)

Why are we here?
* Moses and | are here because we love algorithms

* Why are you here?
* Algorithms are fundamental.
* Algorithms are useful.
e Algorithms are fun!
 CS161isarequired course.

Algorithms: Fundamental & useful

Cryptography (CS255)

Algorithmic
Lens

Robotics (CS237A) Computational

biology (CS262)

As inputs get bigger and bigger,
having good algorithms is critical!

Algorithms are fun!

* Algorithm design is both an art and a science.
* Many surprises!
* Many exciting research questions!

What’s going on?

* Course goals/overview
* Logistics

Course goals

* The design and analysis of algorithms
* These go hand-in-hand

* In this course you will learn:
Flesh out an “algorithmic toolkit”
Learn to think analytically about algorithms

Learn to communicate clearly about
algorithms

More detailed schedule on the website!

Roadmap

Divide and

conquer MIDTERM
Dynamic
Greedy Algs Programming
\ Graphs!
LOn p
M sest, Shor¢
r
ax eSt’ v
ang Min g \ectures The

~
RS
Future! | %

Our guiding questions:

Does it work?
|s it fast?
Can | do better?

Our internal monologue...

What exactly do we mean Okay, this is basically the
by better? And what same as last time. If we just
about that corner case? do the same thing again, it
Shouldn’t we be zero- Does it work? should probably work and
indexing? Is it fast? run pretty fast.

Can | do better?

Plucky the Lucky the
Pedantic Penguin Lackadaisical Lemur
Detail-oriented Big-picture
Precise Intuitive
Rigorous Hand-wavey

Both sides are necessary!

Course elements and resources

* Course website:
 stanford-cs161.github.io/winter2026

* Lectures

* Homework

* Exams

e Office hours, Sections, and Ed

Lectures

e Here (STLC 111), M/W, 1:30-2:50

* Resources available:
* Slides, Videos, Book, IPython notebooks

Pl ALGORITHMS

Cs 161 R O || MINATED

Design and Analysis of Algorithms

Lecture 1
Logistics, introduction, and multiplication!

Part 1: THE BASICS

Slides are the Videos from § s
slides from lecture are , N
available! o
lecture. Textbook (and occasional

hand-outs) have mathy
details that slides may
omit

Z JUPYEETr Karatsuba Las Crecksoint: 16 nurs ago umsaved changes)

B CCom t @ Cerloonar

Lecture 1: Multiplication

The goal:
Mty two -89t ntogers.

The rules:

IPython notebooks
have implementation
details that slides may

omit.

How to get the most out of lectures

* During lecture:
* Show up or tune in, ask questions.
* Engage with in-class questions.

* Before lecture: —
. i Think-Pair-Share
* Do pre-lecture exercises on the website. Terrapins (in-class

 After lecture: questions)
* Go through the exercises on the slides.

@& -8

Siggi the Studious Stork Ollie the Over-achieving Ostrich
(recommended exercises) (challenge questions)

* Do the reading
* either before or after lecture, whatever works best for you.
* do not wait to “catch up” the week before the exam.

Homework!

* Pre-req quiz: Self-graded w/ solutions on course page
Weekly assignments HW1-HWS8
Due Wednesdays at 11:59pm, HW1 due Jan 14

e Homeworks 1-3 will be individual submissions
* Means you should type up their own homework

* From Homework 4 onwards:
* Paired submissions are permitted
* You can make a single submission for groups of <2

* We only accept typed submissions. Handwritten
submissions lose points on homework 1, and receive
ZERO points from homework 2 onwards.

Late days

* You have six late days to use on HW1-HWS8
* See website for more details

* LATE DAYS ARE FOR EMERGENCIES.

* Don’t ask us for an extension if you have an emergency.
That’s what late days are for.

stconTies - aLconmavs - [l ALGORITHNS
ILLUMINATED [l ILLUMINATED il ILCUMINATEDS

Textbook

_ TIMROUGHGARDEN. = TIM ROUGHGARDEN TIM ROUGHGARDEN

[—————=

* Algorithms llluminated, Vols 1, 2 and 3 by Tim
Roughgarden

* Additional resources at algorithmsilluminated.org

* \We may also refer to to the following (optional) books:

”CLRS”: Introduction to
Algorithms by Cormen,
Leiserson, Rivest, and Stein.
Available FOR FREE ONLINE
through the Stanford library.

“Algorithm Design” by
Kleinberg and Tardos

Exams

* Two exams
* Midterm: Wednesday 2/11, 6-9pm
* Final Exam: Wednesday 3/18, 3:30-6:30pm

 We will not have a scheduled alternate final.

* If you know you can’t take the final, you should drop this
class and take it in a different quarter.

* We are participating in the AIWG proctoring pilot
* See website for details

Sections

* Taught by your amazing CAs and will
* recap lecture
* show you how to apply the ideas you learned in lecture
e can occasionally cover new material

* We'll sharing locations & times in next few days
* Go to whichever fits schedule

* Sections are as “mandatory” as lectures:

 we will not track attendance, but

e sections (practice, practice, practice) are the best way to
learn the material in CS 161

* also, a good place to find community

Review sessions

* Friday, 1:30-2:50, STLC 111
* This week: review of induction and week 1 material

 Future weeks: reviews before exams

ACE Section

 CS161ACE: 1-unit supplementary section for CS161

e Algorithm design + problem-solving practice
* Meets Thursdays 3:00—4:50 PM
* Attendance mandatory
e Still attend CS161 lectures and regular sections
* Apply by Jan 9, 2026; waitlist after deadline

* Questions: ACE CA Auddithio Nag
(aunag@stanford.edu)

Talk to us!

* Ed discussion forum:
* Link on top of the course website
e Course announcements will be posted there
* Discuss material with TAs and your classmates

e Office hours:
e See course website for schedule
* They start next week

Course elements and resources

* Course website:
 stanford-cs161.github.io/winter2026

* Lectures

* Homework

* Exams

e Office hours, Sections, and Ed

Course Policies

e Course policies are listed on the website.
* Collaboration Policy, Academic Honesty, ...

* Read them and adhere to them.

Bug bounty!

We hope all PSETs and slides will be bug-
free.

* Howover, we sometmes maek typos.

If you find a typo (that affects
understanding™) on slides, IPython
notebooks, Section material or PSETs:

e Let us know! (Post on Ed or tell a CA).

* The first person to catch a serious bug might
get a good citizenship bonus point.

* Good citizenship points: we might consider
bumping letter grades for people who end up
near boundaries and have lots of good
citizenship points.

Bug Bounty Hunter

*So, typos lke thees onse don’t count, although please
point those out too. Typos like 2 + 2 =5 do count, as does
pointing out that we omitted some crucial information.

For CGOE Students

 There will be some online office hours.
 One of the sections will be recorded.
* See the website for more details! (coming soon)

OAE forms

e Please send OAE forms to
cs161-staff-win2526@cs.stanford.edu

* If you plan to use your OAE-approved exam
accommodations for a specific exam:

Must send letter 10 days before exam date

Feedback

* We will have high-resolution feedback throughout
the course (subset of you randomly asked each
week, starting week 2).

* Please help us improve the course!

Everyone can succeed in this class!

1. Work hard

|
2. Work smart wsan DO I'II-

3. Askfor help 4 . -\

The big questions

* Who are we?
* Professor, TA’s, students?

* Why are we here?
* Why learn about algorithms?

* What is going on?
 What is this course about?
* Logistics?

¢

e Can we multiply integers?
 And can we do it quickly?

Course goals

: Flesh out an “algorithmic toolkit”
Think analytically about algorithms
Learn to communicate clearly about algorithms

oday’s goals

* Karatsuba Integer Multiplication «

* Algorithmic Technique:
* Divide and conquer

 Algorithmic Analysis tool:
* Intro to asymptotic analysis

Let’s start at the beginning

Etymology of “Algorithm”

Al-Khwarizmi was a 9t"-century scholar from Uzbekistan
Wrote a book about how to multiply with Arabic numerals
His ideas came to Europe in the 12t century

Dixit algorizmi
(so says Al-Khwarizmi)

* Originally, “Algorisme” [old French] referred to
just the Arabic number system, but eventually it
came to mean “Algorithm” as we know today.

This was kind of a big deal

44
x 97

=?

XLIV X XCVII

Integer Multiplication

44
x 97

Integer Multiplication

1234567895931413
x 4563823520395533

Integer Multiplication

N

A
| \

1233925720752752384623764283568364918374523856298
X 4562323582342395285623467235019130750135350013753

How fast is the grade-school 207

multiplication algorithm?

(How many one-digit operations?)

" About n? one-digit operations

Think-pair-share Terrapins

At most n? multiplications,
Plucky the and then at most n? additions (for carries)

Pedantic Penguin and then | have to add n different 2n-digit numbers...

Big-Oh Notation

* We say that Grade-School Multiplication
“runs in time O(n?)”

* Formal definition coming Wednesday!

* Informally, big-Oh notation tells us how the running
time scales with the size of the input.

highly non-optimized

Implemented in Python, on my laptop

The runtime “scales like” n?

Multiplying n-digit integers

—— Grade School Multiplication on laptop

20001 pice quadratic

Looks like it’s roughly
15001 Ty, 10p(n) =0.0063 N2—0.5n +12.7 ms...

1000 -

Time(ms)

500 A

0 100 200 300 400 500

Implemented by hand

Ill

The runtime still “scales like” n?

Multiplying n-digit int
2000 ultiplying n-digit integers

1750 -

1500 A

1250 - Some other
quadratic
function of n

Time(ms)
'—'I
-]
Lo]
[}

750 A

Tlaptop(n) ~
500 - 0.0063n%2-0.5n+12.7ms

250

—— Grade School Multiplication on laptop
Grade School Multiplication by hand

0 100 200 300 400 500

Why is big-Oh notation meaningful?

Multiplying n-digit integers

2000 -
—— Grade School Multiplication on laptop R
N . F
1750 4 Grade School Multiplication by hand 7
=== Wizard’s algorithm &

I
500

Let n get bigger...

100000

Multiplying n-digit integers

Grade School Multiplication on laptop
Grade School Multiplication by hand

Wizard’s algorithm

!
0 1000

!
2000

! I I !
3000 4000 5000 6000

n

Take-away

* An algorithm that runs in time O(n'-®) is “better”
than an an algorithm that runs in time O(n?).

* So the question is...

Can we do better?

Can we multiply n-digit integers
faster than 0(n%)?

Let’s dig in to our algorithmic toolkit...

Divide and conquer

Break problem up into smaller (easier) sub-problems

Big problem

Smaller Smaller
problem problem

Yet smaller Yet smaller Yet smaller Yet smaller
problem problem problem problem

Divide and conquer for multiplication

Break up an integer:
1234 =12X100 + 34

1234 X 5678

=(12X100+34)(56X100+78)
—(12><56)1000O+(34><56 + 12><78)100+(34><78)

O @6 O

One 4-digit multiply > Four 2-digit multiplies

Suppose n is even
More generally Q

4 N
Break up an n-digit integer:

[T122 - - %] = [T122 - - 'ﬂ’fn/z] x 10"/2 + [xn/2—+—1$nf2+2 4]

_ /
r xy = (ax 10"2 4+ b)(c x 10™2 + d)
(a X c)lO'"’ (ax d+cx b)mn/2 + (b x d)

® OO ®
One n-digit multiply ‘ Four (n/2)-digit multiplies

"Divide and conquer algorithm
not very precisely...

(Assume n is a power of 2...)

X,y are n-digit numbers

MU'tIplY(X }’) Base case: I've memorized my
1-digit multiplication tables...
lifn=1: O™
* Return xy

e Writex =a 102 + b

a, b, c dare
n/2-digit numbers

* Writey = ¢ 102 + d

Make this pseudocode

° : . more detailed! How
Recu r5|vely.compute ac,ad, bc, bd: e o
® ac = MU|t|p|Y(a, C), etc.. How should we implement

* Add them up to get xy “multiplication by 10"”?

e xy =ac 10"+ (ad + bc) 102 + bd @

See the Lecture 1 Python notebook for actual code! Siggi the Studious Stork

Think-Pair-Share

* We saw that this 4-digit multiplication problem
broke up into four 2-digit multiplication problems

1234 X 5678

* If you recurse on those 2-digit multiplication
problems, how many 1-digit multiplications do you
end up with total?

. 16 one-digit
Recursion Tree multiplies!

4 digits

2 digits 2 digits 2 digits 2 digits

What is the running time?

* Better or worse than the grade school algorithm?

* How do we answer this question?
1. Tryit.
2. Try to understand it analytically.

Time(ms)

1.

Try It.

Multiplying n-digit integers

Check out the Lecture 1 IPython Notebook

Conjectures about
running time?

Doesn’t look too good

3000 A

2500 A

2000 A

1500 A

1000 A

500 +

—— Grade School Multiplication
—— Divide and Conquer |

but hard to tell...

Maybe one implementation
is slicker than the other?

Maybe if we were to run it
to n=10000, things would
look different.

300

500

QD
(]

4

Something funny is happening at powers of 2...

2. Try to understand the running
time analytically

* Proof bysmeta-reasoning:

It must be faster thanrthe grade school
algorithm, because weqre learning it in
aralgorithms class:

Not sound logic!

{!

Plucky the Pedantic Penguin

2. Try to understand the running
time analytically

Think-Pair-Share:
* We saw that multiplying 4-digit numbers resulted in 16
one-digit multiplications.

* How about multiplying 8-digit numbers?

 What do you think about n-digit numbers?

-

. 64 = 43
Recursion Tree one-digit

multiplies!

8 digits

4 digits 4 digits 4 digits 4 digits

2. Try to understand the running
time analytically

Claim:

We end up doing about n? one-digit
multiplications
—

The running time of this algorithm is
AT LEAST n?operations.

There are n? 1-digit problems

1 problem
of size n K If you cut n in half

log,(n) times,
‘ ‘ ‘ 4 problems you get down to 1.
of size n/2
* So atlevel
[N N] t — logZ(n)
we get...
O “’ O S 4t problems l
‘ of size n/2t 410821 —
Note: this is just a lo 4 __ 2
cartoon — I’'m not n 82 — n
g.oi||1g tlo draw all 4t .. K problems of size 1.
circles!
2
®_ o © _© _©0_0° TV problems
® "o 0 o © of size 1

That's a bit disappointing

All that work and still (at least) 0(n?)...

2)\
n

But wait!!

n

Divide and conquer can actually make progress

* Karatsuba figured out how to do this better!

(a-10™2 4+ b)(c- 10™/? + d)
= ac- 10" + (ad 4 bc)10™? + bd

Need these three things

LY

* If only we could recurse on three things instead of four...

Karatsuba integer multiplication

* Recursively compute these THREE things:

® ac Subtract these off

get this

. (a+b)(c+d) [(a+b)(c+d) = ac + bd

* Assemble the product:

zy = (a-10"% +b)(c-10™/% + d)
= ac- 10" + (ad + be)10™2 + bd

 How would this work?

(Still not super precise, see IPython

X,y are n-digit numbers notebook for detailed code. Also,

MU|t|p|y(X y) still assume n is a power of 2.)
* If n=1:
* Return xy a, b, c, dare

n/2-digit numbers

°Writex=a10§+bandy=610§+d
e ac = Multiply(a, c)

* bd = Multiply(b, d)

e z = Multiply(a+b, c+d)

e Xy =ac 10"+ (z — ac - bd) 10"/2 + bd

* Return xy

What’s the running time?

Klf you cut nin half

1 problem
of size n log,(n) times, you get
down to 1.
o000 v
of size n/2 e So at level
t = log,(n)
we get...
@a®@g® 3rovems | somr = pons <y
‘ ‘ ‘ of size n/2! k problems of size 1.
Note: this is just a
cartoon — I’'m not
going tlo drawall3® We aren’t accounting for the
circles! work at the higher levels!
1.6 But we’ll see later that this
® ® ® _ ©® _© """ problems turnsoutto be okay.
® "o 0 O of size 1

&

This is much better!

We can even see it in real life!

_ —_ @, python
Multiplying n-digit integers
—— Grade School Multiplication

2000 - Divide and Conquer Il (Karatsuba)

1500 A
m
E
v .
e 1000
=

500 A
0 | /

0 100 200 300 400 500

Can we do better?

* Toom-Cook (1963): instead of breaking into three n/2-
sized problems, break into five n/3-sized problems.
* Runs in time 0(n140>)

Try to figure out how to break Given jchat you can t’)reak'an
up an n-sized problem into five n-S|-zed problem into five
n/3-sized problems! (Hint: start n/3-sized problems, where
with nine n/3-sized problems). does the 1.465 come from?

Siggi the Studious Stork
Ollie the Over-achieving Ostrich

* Schonhage-Strassen (1971):

* Runs in time O(nlog(n) loglog(n))
* Furer (2007)

* Runs in time nlog(n) - 208" (n)

* Harvey and van der Hoeven (2019) [This is just for fun, you

. N don’t need to know
Runs in time O(n log(n)) these algorithms!]

Course goals

* Think analytically about algorithms
* Flesh out an “algorithmic toolkit”
* Learn to communicate clearly about algorithms

oday’s goals

* Karatsuba Integer Multiplication

* Algorithmic Technique:
* Divide and conquer

 Algorithmic Analysis tool:
* Intro to asymptotic analysis

The big questions

* Who are we?
* Professor, TA’s, students?

* Why are we here?
* Why learn about algorithms?
* What is going on?
* What is this course about?
* Logistics?
e Can we multiply integers?
 And can we do it quickly?

* Wrap-up

Wrap up
» stanford-cs161.github.io/winter2026
* Algorithms are fundamental, useful and fun!

* In this course, we will develop both algorithmic _
intuition and algorithmic technical chops ﬁ

7"1__\7

e Karatsuba Integer Multiplication:
* You can do better than grade school multiplication!

 Example of divide-and-conquer in action
* Informal demonstration of asymptotic analysis

Next time

* Sorting!
* Asymptotics and (formal) Big-Oh notation

* Divide and Conquer some more

BEFORE Next time

* Pre-lecture exercise! On the course website!
 Check out Ed!

	Slide 1: CS 161 Design and Analysis of Algorithms
	Slide 2: The big questions
	Slide 3: Who are we?
	Slide 4: Why are we here?
	Slide 5: Algorithms: Fundamental & useful
	Slide 6: Algorithms are fun!
	Slide 7: What’s going on?
	Slide 8: Course goals
	Slide 9: Roadmap
	Slide 10: Our guiding questions:
	Slide 11: Our internal monologue…
	Slide 12: Course elements and resources
	Slide 13: Lectures
	Slide 14: How to get the most out of lectures
	Slide 15: Homework!
	Slide 16: Late days
	Slide 17: Textbook
	Slide 18: Exams
	Slide 21: Sections
	Slide 22: Review sessions
	Slide 23: ACE Section
	Slide 24: Talk to us!
	Slide 25: Course elements and resources
	Slide 26: Course Policies
	Slide 29: Bug bounty!
	Slide 30: For CGOE Students
	Slide 31: OAE forms
	Slide 32: Feedback
	Slide 33: Everyone can succeed in this class!
	Slide 34: The big questions
	Slide 35: Today’s goals
	Slide 36: Let’s start at the beginning
	Slide 37: Etymology of “Algorithm”
	Slide 38: This was kind of a big deal
	Slide 39: Integer Multiplication
	Slide 40: Integer Multiplication
	Slide 41: Integer Multiplication
	Slide 42: Big-Oh Notation
	Slide 43: Implemented in Python, on my laptop
	Slide 44: Implemented by hand
	Slide 45: Why is big-Oh notation meaningful?
	Slide 46: Let n get bigger…
	Slide 47: Take-away
	Slide 48: Can we do better?
	Slide 49: Let’s dig in to our algorithmic toolkit…
	Slide 50: Divide and conquer
	Slide 51: Divide and conquer for multiplication
	Slide 52: More generally
	Slide 53: Divide and conquer algorithm not very precisely…
	Slide 54: Think-Pair-Share
	Slide 55: Recursion Tree
	Slide 56: What is the running time?
	Slide 57: 1. Try it.
	Slide 58: 2. Try to understand the running time analytically
	Slide 59: 2. Try to understand the running time analytically
	Slide 60: Recursion Tree
	Slide 61: 2. Try to understand the running time analytically
	Slide 63: There are n2 1-digit problems
	Slide 64: That’s a bit disappointing All that work and still (at least) cap O open paren n squared , , close paren …
	Slide 65: Divide and conquer can actually make progress
	Slide 66: Karatsuba integer multiplication
	Slide 67: How would this work?
	Slide 68: What’s the running time?
	Slide 69: This is much better!
	Slide 70: We can even see it in real life!
	Slide 71: Can we do better?
	Slide 72: Today’s goals
	Slide 73: The big questions
	Slide 74: Wrap up
	Slide 75: Next time

