
CS 161
Design and Analysis of Algorithms

Lecture 1: 

Logistics, introduction, and multiplication!

Slides originally created by Mary Wootters



The big questions

• Who are we?
• Professor, TAs, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?

• Logistics?

• Can we multiply integers?
• And can we do it quickly?



Who are we?
• Professors: 

• Ellen Vitercik and Moses Charikar

• Course manager: 

• Amelie Byun

• Awesome CAs!
• Ziyi Ding (head CA)
• Illia Shkirko
• Karan Bhasin
• Michael Rybalkin
• Mingwei Yang
• Nikil Selvam
• Ruiquan Gao
• Simon Kim
• Will Fang
• Yash Dave
• Zoe Wefers
• Auddithio Nag (ACE CA)

Ellen Moses

Amelie

Illia Karan Michael Mingwei Nikil

Simon Will Yash ZoeRuiquan

Auddithio

Ziyi



Why are we here?

• Moses and I are here because we love algorithms

• Why are you here?
• Algorithms are fundamental.

• Algorithms are useful.

• Algorithms are fun!

• CS161 is a required course.



Algorithms: Fundamental & useful

Language models (CS224N)

Robotics (CS237A) Security (CS155)

Recommender 
systems (CS246)

Cryptography (CS255)

Computational 
biology (CS262)

As inputs get bigger and bigger,
having good algorithms is critical!

The 
Algorithmic 

Lens



Algorithms are fun!

• Algorithm design is both an art and a science.

• Many surprises!

• Many exciting research questions!



What’s going on?

• Course goals/overview

• Logistics



Course goals

• The design and analysis of algorithms
• These go hand-in-hand

• In this course you will learn:
• Design: Flesh out an “algorithmic toolkit”

• Analysis: Learn to think analytically about algorithms

• Communication: Learn to communicate clearly about 
algorithms



Roadmap

Graphs!

Asymptotic 
Analysis

Dynamic 
ProgrammingGreedy Algs

MIDTERM

The
Future!

More detailed schedule on the website!



Our guiding questions:

Does it work?
Is it fast?

Can I do better?



Our internal monologue…

Does it work?
Is it fast?

Can I do better?

Plucky the 
Pedantic Penguin

Lucky the 
Lackadaisical Lemur

Detail-oriented
Precise

Rigorous

Big-picture
Intuitive

Hand-wavey

Okay, this is basically the 
same as last time. If we just 
do the same thing again, it 
should probably work and 

run pretty fast.

What exactly do we mean 
by better?  And what 

about that corner case?  
Shouldn’t we be zero-

indexing?

Both sides are necessary!



Course elements and resources

• Course website:
• stanford-cs161.github.io/winter2026

• Lectures

• Homework

• Exams

• Office hours, Sections, and Ed



• Here (STLC 111), M/W, 1:30-2:50

• Resources available:
• Slides, Videos, Book, IPython notebooks

Lectures

IPython notebooks 
have implementation 
details that slides may 

omit.

Slides are the 
slides from 

lecture.  

Videos from 
lecture are 
available!

Textbook (and occasional 
hand-outs) have mathy 
details that slides may 

omit



How to get the most out of lectures
• During lecture:

• Show up or tune in, ask questions.
• Engage with in-class questions.

• Before lecture:
• Do pre-lecture exercises on the website.

• After lecture:
• Go through the exercises on the slides.

• Do the reading
• either before or after lecture, whatever works best for you.
• do not wait to “catch up” the week before the exam.

Siggi the Studious Stork
(recommended exercises)

Ollie the Over-achieving Ostrich
(challenge questions)

Think-Pair-Share 
Terrapins (in-class 
questions)



Homework!

• Pre-req quiz: Self-graded w/ solutions on course page

• Weekly assignments HW1-HW8

• Due Wednesdays at 11:59pm, HW1 due Jan 14

• Homeworks 1-3 will be individual submissions
• Means you should type up their own homework

• From Homework 4 onwards:
• Paired submissions are permitted
• You can make a single submission for groups of ≤2

• We only accept typed submissions. Handwritten 
submissions lose points on homework 1, and receive 
ZERO points from homework 2 onwards.



Late days

• You have six late days to use on HW1–HW8
• See website for more details

• LATE DAYS ARE FOR EMERGENCIES.
• Don’t ask us for an extension if you have an emergency. 

That’s what late days are for.



Textbook

• Algorithms Illuminated, Vols 1, 2 and 3 by Tim 
Roughgarden

• Additional resources at algorithmsilluminated.org

• We may also refer to to the following (optional) books:

”CLRS”: Introduction to 
Algorithms by Cormen, 

Leiserson, Rivest, and Stein.  
Available FOR FREE ONLINE 
through the Stanford library.

“Algorithm Design” by  
Kleinberg and Tardos



Exams

• Two exams
• Midterm: Wednesday 2/11, 6-9pm
• Final Exam: Wednesday 3/18, 3:30-6:30pm

• We will not have a scheduled alternate final.
• If you know you can’t take the final, you should drop this 

class and take it in a different quarter.

• We are participating in the AIWG proctoring pilot
• See website for details



Sections

• Taught by your amazing CAs and will
• recap lecture
• show you how to apply the ideas you learned in lecture
• can occasionally cover new material

• We’ll sharing locations & times in next few days
• Go to whichever fits schedule

• Sections are as “mandatory” as lectures:
• we will not track attendance, but
• sections (practice, practice, practice) are the best way to 

learn the material in CS 161
• also, a good place to find community



Review sessions

• Friday, 1:30-2:50, STLC 111

• This week: review of induction and week 1 material

• Future weeks: reviews before exams



ACE Section

• CS161ACE: 1-unit supplementary section for CS161
• Algorithm design + problem-solving practice

• Meets Thursdays 3:00–4:50 PM

• Attendance mandatory

• Still attend CS161 lectures and regular sections

• Apply by Jan 9, 2026; waitlist after deadline

• Questions: ACE CA Auddithio Nag 
(aunag@stanford.edu)



Talk to us!

• Ed discussion forum:
• Link on top of the course website

• Course announcements will be posted there

• Discuss material with TAs and your classmates

• Office hours:
• See course website for schedule

• They start next week



Course elements and resources

• Course website:
• stanford-cs161.github.io/winter2026

• Lectures

• Homework

• Exams

• Office hours, Sections, and Ed



Course Policies

• Course policies are listed on the website.
• Collaboration Policy, Academic Honesty, ...

• Read them and adhere to them.



Bug bounty!
• We hope all PSETs and slides will be bug-

free.

• Howover, we sometmes maek typos.

• If you find a typo (that affects 
understanding*) on slides, IPython 
notebooks, Section material or PSETs:
• Let us know! (Post on Ed or tell a CA).
• The first person to catch a serious bug might 

get a good citizenship bonus point.
• Good citizenship points: we might consider 

bumping letter grades for people who end up 
near boundaries and have lots of good 
citizenship points.

*So, typos lke thees onse don’t count, although please 
point those out too.  Typos like 2 + 2 = 5 do count, as does 
pointing out that we omitted some crucial information.

Bug Bounty Hunter



For CGOE Students

• There will be some online office hours.

• One of the sections will be recorded.

• See the website for more details! (coming soon)



OAE forms

• Please send OAE forms to

cs161-staff-win2526@cs.stanford.edu

• If you plan to use your OAE-approved exam 
accommodations for a specific exam:

Must send letter 10 days before exam date



Feedback

• We will have high-resolution feedback throughout 
the course (subset of you randomly asked each 
week, starting week 2).

• Please help us improve the course!



Everyone can succeed in this class!

1. Work hard

2. Work smart

3. Ask for help



The big questions

• Who are we?
• Professor, TA’s, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?

• Logistics?

• Can we multiply integers?
• And can we do it quickly?



Today’s goals

• Design: Flesh out an “algorithmic toolkit”

• Analysis: Think analytically about algorithms

• Communication: Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication

• Algorithmic Technique: 
• Divide and conquer

• Algorithmic Analysis tool: 
• Intro to asymptotic analysis



Let’s start at the beginning



Etymology of “Algorithm”
• Al-Khwarizmi was a 9th-century scholar from Uzbekistan
• Wrote a book about how to multiply with Arabic numerals
• His ideas came to Europe in the 12th century

Dixit algorizmi 

(so says Al-Khwarizmi)

• Originally, “Algorisme” [old French] referred to 
just the Arabic number system, but eventually it 
came to mean “Algorithm” as we know today.



This was kind of a big deal

XLIV × XCVII = ?
44
97x



Integer Multiplication

44
97x



Integer Multiplication

1234567895931413
4563823520395533x



Integer Multiplication

1233925720752752384623764283568364918374523856298
4562323582342395285623467235019130750135350013753x

???

n

About 𝑛2 one-digit operations

(How many one-digit operations?)

Think-pair-share Terrapins

Plucky the 
Pedantic Penguin

At most 𝑛2 multiplications,
and then at most 𝑛2 additions (for carries) 
and then I have to add n different 2n-digit numbers…

How fast is the grade-school 
multiplication algorithm?



Big-Oh Notation

• We say that Grade-School Multiplication

 “runs in time O(n2)”

• Formal definition coming Wednesday!

• Informally, big-Oh notation tells us how the running 
time scales with the size of the input.



Implemented in Python, on my laptop
highly non-optimized 

Looks like it’s roughly
Tlaptop(n) = 0.0063 n2 – 0.5 n + 12.7 ms...

The runtime “scales like” n2



Implemented by hand

Some other 
quadratic 
function of n

Tlaptop(n) ≈
0.0063 n2 – 0.5 n + 12.7 ms

The runtime still “scales like” n2



Why is big-Oh notation meaningful?

≈ .0063𝑛2

≈
𝑛1.6

10
+ 100 

Wizard’s algorithm



Let n get bigger…

≈ .0063𝑛2

≈
𝑛1.6

10
+ 100 

T
im

e 
(m

s)

Wizard’s algorithm



Take-away

• An algorithm that runs in time O(n1.6) is “better” 
than an an algorithm that runs in time O(n2).

• So the question is…



Can we do better?

𝑛

𝑛2

Can we multiply n-digit integers 
faster than 𝑂 𝑛2 ?



Let’s dig in to our algorithmic toolkit…



Divide and conquer
Break problem up into smaller (easier) sub-problems

Big problem

Smaller 
problem

Smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem



Divide and conquer for multiplication

1234 × 5678

Break up an integer:

1234 = 12×100 + 34

= ( 12×100 + 34 ) ( 56×100 + 78 )
= ( 12 × 56 )10000 + ( 34 × 56  +  12 × 78 )100 + ( 34 × 78 )

1 2 3 4

One 4-digit multiply Four 2-digit multiplies



More generally

1 2 3 4

One n-digit multiply Four (n/2)-digit multiplies

Break up an n-digit integer:

Suppose n is even



Divide and conquer algorithm
not very precisely…

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
𝑛

2 + 𝑏

• Write 𝑦 = 𝑐 10
𝑛

2 + 𝑑

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑:
• ac = Multiply(a, c), etc..

• Add them up to get 𝑥𝑦:
• xy = ac 10n + (ad + bc) 10n/2 + bd

Multiply(𝑥, 𝑦): 

a, b, c, d are 
n/2-digit numbers

Base case: I’ve memorized my 
1-digit multiplication tables…

x,y are n-digit numbers (Assume n is a power of 2…)

Siggi the Studious Stork

Make this pseudocode 
more detailed! How 

should we handle odd n?  
How should we implement 

“multiplication by 10n”?

See the Lecture 1 Python notebook for actual code!



Think-Pair-Share

• We saw that this 4-digit multiplication problem 
broke up into four 2-digit multiplication problems

• If you recurse on those 2-digit multiplication 
problems, how many 1-digit multiplications do you 
end up with total?

1234 × 5678



Recursion Tree

4 digits

2 digits

1 
digit

2 digits 2 digits 2 digits

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

16 one-digit 
multiplies!



What is the running time?

• Better or worse than the grade school algorithm?

• How do we answer this question?
1. Try it.

2. Try to understand it analytically.



1. Try it.
Check out the Lecture 1 IPython Notebook

Conjectures about 
running time?

Maybe one implementation 
is slicker than the other?

Maybe if we were to run it 
to n=10000, things would 

look different.

Doesn’t look too good 
but hard to tell…

Something funny is happening at powers of 2…



2. Try to understand the running 
time analytically 

• Proof by meta-reasoning:

It must be faster than the grade school 
algorithm, because we are learning it in 

an algorithms class.

Not sound logic!

Plucky the Pedantic Penguin



2. Try to understand the running 
time analytically 

Think-Pair-Share:
• We saw that multiplying 4-digit numbers resulted in 16 

one-digit multiplications.

• How about multiplying 8-digit numbers?

• What do you think about n-digit numbers?



Recursion Tree

8 digits

4 digits

2 
digit

4 digits 4 digits 4 digits

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

64 = 43

one-digit 
multiplies!

1

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

1



2. Try to understand the running 
time analytically 

Claim: 

We end up doing about n2 one-digit 
multiplications

⇒

The running time of this algorithm is 

AT LEAST n2 operations.



There are n2 1-digit problems

1 problem 
of size n

4 problems 
of size n/2

4t problems 
of size n/2t

____ problems 
of size 1

…

• If you cut n in half 
log2(𝑛) times,           
you get down to 1.

• So at level
        t =  log2(𝑛) 
    we get…

 4log2 𝑛  =

𝑛log2 4 =  𝑛2 

problems of size 1.

… 

Note: this is just a 

cartoon – I’m not 
going to draw all 4t  
circles!



That’s a bit disappointing
All that work and still (at least) 𝑂 𝑛2 …

𝑛

𝑛2

But wait!!



Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

• If only we could recurse on three things instead of four…

Need these three things



Karatsuba integer multiplication

• Recursively compute these THREE things:
• ac 

• bd

• (a+b)(c+d)
(a+b)(c+d) = ac + bd + bc + ad

Subtract these off
get this

• Assemble the product:



How would this work?

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
𝑛

2 + 𝑏 and 𝑦 = 𝑐 10
𝑛

2 + 𝑑

• ac = Multiply(a, c)

• bd = Multiply(b, d)

• z = Multiply(a+b, c+d)

• xy = ac 10n + (z – ac - bd) 10n/2 + bd

• Return xy

Multiply(𝑥, 𝑦): 

a, b, c, d are 
n/2-digit numbers

x,y are n-digit numbers
(Still not super precise, see IPython 
notebook for detailed code.   Also, 

still assume n is a power of 2.)



What’s the running time?

1 problem 
of size n

3 problems 
of size n/2

3t problems 
of size n/2t

____ problems 
of size 1

…

• If you cut n in half 
log2(𝑛) times, you get 
down to 1.

• So at level
        t =  log2(𝑛) 
    we get…

3log2 𝑛 = 𝑛log2 3 ≈ 𝑛1.6

problems of size 1.

𝑛1.6

We aren’t accounting for the 
work at the higher levels!  

But we’ll see later that this 
turns out to be okay.

Note: this is just a 

cartoon – I’m not 
going to draw all 3t  
circles!

… 



This is much better!

𝑛2

𝑛1.6

𝑛



We can even see it in real life!



Can we do better?
• Toom-Cook (1963): instead of breaking into three n/2-

sized problems, break into five n/3-sized problems. 
• Runs in time O 𝑛1.465  

• Schönhage–Strassen (1971):
• Runs in time O(𝑛 log 𝑛 log log 𝑛 ) 

• Furer (2007)
• Runs in time 𝑛 log 𝑛 ⋅ 2O(log∗ 𝑛 ) 

• Harvey and van der Hoeven (2019)
• Runs in time O(𝑛 log 𝑛 ) 

Ollie the Over-achieving Ostrich

Try to figure out how to break 
up an n-sized problem into five 
n/3-sized problems!  (Hint: start 
with nine n/3-sized problems).

Siggi the Studious Stork

Given that you can break an 
n-sized problem into five 

n/3-sized problems, where 
does the 1.465 come from?

[This is just for fun, you 
don’t need to know 

these algorithms!]



Today’s goals

• Think analytically about algorithms

• Flesh out an “algorithmic toolkit”

• Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication

• Algorithmic Technique: 
• Divide and conquer

• Algorithmic Analysis tool: 
• Intro to asymptotic analysis



The big questions

• Who are we?
• Professor, TA’s, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?

• Logistics?

• Can we multiply integers?
• And can we do it quickly?

• Wrap-up



Wrap up

• stanford-cs161.github.io/winter2026

• Algorithms are fundamental, useful and fun!

• In this course, we will develop both algorithmic 
intuition and algorithmic technical chops

• Karatsuba Integer Multiplication:
• You can do better than grade school multiplication!

• Example of divide-and-conquer in action

• Informal demonstration of asymptotic analysis



• Sorting!

• Asymptotics and (formal) Big-Oh notation

• Divide and Conquer some more

Next time

BEFORE Next time
• Pre-lecture exercise!  On the course website!

• Check out Ed!
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