Lecture 2

Asymptotic Notation,
Worst-Case Analysis, and MergeSort



Announcement

e CA office hours will start next week
* I’ll have OH today, 3-4pm, in Huang 250



Cast

Last time
Philosophy A
* Algorithms are awesome!
Plucky the pedantic Lucky the

* Our motivating questions: penguin
e Does it work?

e |sitfast? "
 Can | do better?

_ Think-Pair-Share
Technical content Terrapins

y

Ollie the Siggi the
over-achieving ostrich  studious stork

lackadaisical lemur

e Karatsuba integer multiplication

* Example of “Divide and Conquer”

* Not-so-rigorous analysis



Today

* We are going to ask:
* Does it work?
* |s it fast?

* We’'ll start to see how to answer these by looking at
some examples of sorting algorithms.
* InsertionSort

* MergeSort

SortingHatSort not discussed



The Plan

* Sorting! -

* Worst-case analyisis

* InsertionSort: Does it work?
* Asymptotic Analysis

* InsertionSort: Is it fast?
* MergeSort

e Does it work?
e |s it fast?



Sorting

* Important primitive
* For today, we’ll pretend all elements are distinct.

6faf3fs]rfs|2]7
1f2]3fes]ef7]s

Length of the list is n




| hope everyone did the
ore-lecture exercise!

What was the
mystery sort

algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort

def mysteryAlgorithmOne (A) :
for x in A:

B = [None for 1 in range(len(A))]
for 1 in range(len(B)):
if B[1] == None or BJ[i] > x:

7 = len(B)-1
while 7 > 1i:
B[7J] B[j-1]
j -=
B[i] = x
break
return B

1

def mysteryAlgorithmTwo (A) :
for 1 in range(l,len(A)) :
current = A[i]

7 = 1i-1

while 7 >= 0 and A[J] > current:
A[3+1] = A[J]
J -= 1

A[J+1l] = current
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InsertionSort 6|4a|3|8]|5

example

Start by moving A[1] toward
the beginning of the list until
you find something smaller

(or can’t go any further): Then move A[3]:

6/4[3]8]5 3|46/ 8]5
4l6]3]|8]5 3|46/ 8|5
Then move A[2]: l Then move A[4]: :
4]6 3]|8]5 3|ajel8]s
3]aje]8]s 3|4 5|6]8

Then we are done!



Insertion Sort

1. Does it work?
2. lIs it fast?



The Plan

* InsertionSort recap

* Worst-case Analysis
* Back to InsertionSort: Does it work?
* Asymptotic Analysis
* Back to InsertionSort: Is it fast?
* MergeSort

e Does it work?
e |s it fast?



Claim: InsertionSort “works”

e “Proof:” It just worked in this example:

6/4]3]|8]5

[6]4[3[8[s]  [3]4]6el8[5]
a[6[3]8]5]  [3]alel 8[5]

[4]6 3 3|4[6]8!5
3 EE 5 Sorted!




Claim: InsertionSort “works”

e “Proof:” | did it on a bunch of random lists and it
always worked:

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

— - YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
‘F!" - [112!3?4?5?51?J8!9flﬂ] YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
] YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

for trlﬂ.l in I'E-H'EIE{ ]-ﬂ {J } H YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

Ehl].f flE fﬂ.:l YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

. YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
Insertionsort { ,FL'_I YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

, YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

i_f 15 Enrted fﬂ: H YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

—_ YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

; 1 [ YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

p-I‘J_nt YES IT IS5 SORTED! YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!



What does it mean to “work”?

* Is it enough to be correct on only one input?
* Is it enough to be correct on most inputs?

* In this class, we will use worst-case analysis:
* An algorithm must be correct on all possible inputs.

* The running time of an algorithm is the worst possible
running time over all inputs.



Worst-case analysis

Think of it like a game: Worst-case analysis guarantee:
Algorithm should work (and be

fast) on that worst-case input.

Here is my algorithm!

Algorithm:
Do the thing
Do the stuff
Return the answer

HERE IS AN INPUT!

(WHICH | DESIGNED
TO BE TERRIBLE FOR
YOUR ALGORITHM!)

Algorithm
designer

* Pros: very strong guarantee
* Cons: very strong guarantee



Insertion Sort

1. Does it work? -

2. lsit fast?

g:, e Okay, so it’s pretty obvious that it works.

e HOWEVER! In the future it won’t be so
obvious, so let’s take some time now to
see how we would prove this rigorously.




Why does this work?

e Say you have a sorted list, HB , and

another element | 5 |.

* Insert| 5  right after the largest thing that’s still
smaller than' 5 |. (Aka, right after).

* Then you get a sorted list: 4 5



So just use this logic at every step.

H n n The first element, [6], makes up a sorted list.
So correctly inserting 4 into the list [6] means
4 H E that [4,6] becomes a sorted list.

n n E The first two elements, [4,6], make up a
sorted list.
3 E E So correctly inserting 3 into the list [4,6] means
that [3,4,6] becomes a sorted list.

3 4 5 The first three elements, [3,4,6], make up a
sorted list.
nﬂ 8 So correctly inserting 8 into the list [3,4,6] means
that [3,4,6,8] becomes a sorted list.

H n The first four elements, [3,4,6,8], make up a
sorted list.
So correctly inserting 5 into the list [3,4,6,8]
3 5 means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE!



This sounds like a job for...

Proof By
Induction!



There is a handout with details!

* See website!

2 Correctness of InsertionSort

Once you figure out what INSERTIONSORT is doing (see the slides/lecture video for the intuition on this),
you may think that it’s “obviously” correct. However, if you didn’t know what it was doing and just got the
above code, maybe this wouldn’t be so obvious. Additionally, for algorithms that we’ll study in the future,
it won’t always be obvious that it works, and so we’ll have to prove it. So in this handout we’ll carefully go
through a proof that INSERTIONSORT is correct.

We'll do the proof by maintaining a loop invariant, in this case that after iteration %, then A[:i+1] is
sorted. This is obviously true after iteration 0 (aka, before the algorithm begins), because the one-element
list A[: 1] is definitely sorted. Then we’ll show that for any k& with 0 < k < n, if this loop invariant holds for
k — 1, then it holds for k. That is, if it is true that A[:k] is sorted after the k — 1’st iteration, then it is true
that A[:k+1] is sorted after the k’th iteration. At the end of the day, we’ll conclude that A[:n] (aka, the
whole thing) is sorted after the n — 1’st iteration, and we’ll be done.

Formally, we will proceed by induction.

e Inductive hypothesis. After iteration i of the outer loop, A[:i+1] is sorted.

e Base case. After iteration 0 of the outer loop (aka, before the algorithm begins), the list A[:1]
contains only one element, and this is sorted.

¢ Inductive step. Let k be an integer so that 0 < k < n. Suppose that the inductive hypothesis holds
for £ —1, so A[:k] is sorted after the k — 1’st iteration. We want to show that A[:k+1] is sorted after
the k’th iteration.

Suppose that j* is the largest integer in {0, ...,k — 1} such that A[j*] < A[k]. Then the effect of the
inner loop is to turn

[A[O]aA[lL s :A[j*]v s =A[k' - l]vA[kH

into
[A[O]’A[l]v s 9A[j*]7A[k]’A[j* + 1]= s :A[k - 1]]



Outline of a proof by induction

Let A be a list of length n

* Inductive Hypothesis:
o A[:i+1] is sorted at the end of the i iteration (of the outer loop).

e Base case (i=0):
« A[:1] issorted atthe end of the O’th iteration. v/
* Inductive step:

* Forany 0 <k <n, if the inductive hypothesis holds for i=k-1, then it holds for i=k.
» Aka, if Al:k] is sorted at step k-1, then A[:k+1] is sorted at step k

_ This logic
e Conclusion: (see handout for details)

* The inductive hypothesis holds fori=0, 1, ..., n-1.
* In particular, it holds for i=n-1.

e A[:n] issorted atthe end of the n-1’st iteration
* Aka, Ais sorted at the end of the algorithm!

E E The first two elements, [4,6], make up a
sorted list.
So correctly inserting 3 into the list [4,6] means _
3 5 . This was
that [3,4,6] becomes a sorted list. _ o
iteration i=2.




Aside: proofs by induction

* We're gonna see/do/skip over a lot of them.
* I’'m assuming you’re comfortable with them from CS103.

* If that went by too fast and was confusing:
* Friday review session
* Lecture 2 notes
* Book (appendix A)

Make sure you really understand the
* Office Hours argument on the previous slide! Check
out the handout for a more formal write-
up, and go to section for an overview of
what we are looking for in proofs by
induction.

Siggi the Studious Stork



What have we learned?

* In this class we will use worst-case analysis:

* We assume that a “bad guy” comes up with a worst-case
input for our algorithm, and we measure performance
on that worst-case input.

* With this definition, InsertionSort “works”
* Proof by induction!



The Plan

* InsertionSort recap

* Worst-case Analysis

* Back to InsertionSort: Does it work?
* Asymptotic Analysis

* Back to InsertionSort: Is it fast?
* MergeSort

e Does it work?
e |s it fast?



How fast is InsertionSort?

* This fast:

Maive vs. non-naive insertion sort

— [EIVE VErSiOn

o —Ess naive version

I I I I I
200 400 600 800 1000




Issues with this answer?

* The Hsame” algorithm Can be 175 Naive vs. non-naive insertion sort
slower or faster depending 150 — LS mae vrsn
on the implementations.

T 100 1

75 1

Time{m

* |t can also be slower or
faster depending on the

g0

25 1

hardware that we run it on. e —
* It might also be slower or

faster depending on the With this answer,

inputs we use. running time” isn't

even well-defined!

e What if n=20007




How fast is InsertionSort?

* Let’s count the number of operations!

def InsertionSort (A) :
for i in range(l,len(A)):

current = A[1i]

J = i-1

while j >= 0 and A[J] > current:
A[J+1] = A[]]
7 -=1

A[J+1] = current

By my count®...

« 2n%? —n — 1 variable assignments

e« 2n? —n — 1increments/decrements
« 2n? — 4n + 1 comparisons

*Do not pay attention to these formulas, they do not matter.
Also not valid for bug bounty points.



Issues with this answer?

def InsertionSort (A) :

* It’s very tedious! SO L n reman e

* Might be slightly while 5 5= 0 and AL5) > current:
different for slightly P
different A[9+1] = current

implementations.

Counting individual

° In order to use thIS to operations is a lot of work and
. doesn’t seem very helpful!
understand running
time, | need to know
how long each operation
takes, plus a whole
bunch of other stuff...

Lucky the lackadaisical lemur



In this class we will use...

* Big-Oh notation!

* Gives us a meaningful way to talk about the
running time of an algorithm, independent of
programming language, computing platform, etc.,
without having to count all the operations.



Main idea:

Focus on how the runtime scales with n (the input size).

(Only pay attention to the largest
Some examples-" function of n that appears.)

Number of operations Asymptojuc Running
Time
! 2
@F 100 0(n?)

0.063 Sn+12.7 0(n?)

10000 1.5
100 @ 10 \/T_l 0(n*) We say this algorithm is

/ “asymptotically faster”
11 1 O(nlog(n)) than the others.



Why is this a good idea?

e Suppose the running time of an algorithm is:

T(n) =10n*+3n+7 ms

This constant factor of 10
depends a lot on my

computing platform... These lower-order

terms don’t really
matter as n gets large.

We’'re just left with the n? term!
That’s what’s meaningful.



Pros and Cons of Asymptotic Analysis

Pros: Cons:
* Abstracts away from * Only makes sense if n is
hardware- and language- large (compared to the

specific issues.
* Makes algorithm analysis
much more tractal?le. 1000000000
* Allows us to meaningfully
compare how algorithms will
perform on large inputs.

constant factors).

is “better” than n2 ?1?!



pronounced “big-oh of ...” or sometimes “oh of ...”

Informal definition for O?...)

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* We say “T'(n) is O(Q(TL))" if:
for large enough n,
T(n) is at most some constant multiple of g(n).

Here, “constant” means “some number
that doesn’t depend on n.”



for large enough n,
Exa m p | e T(n) is at most some constant
an _I_ 10 — O(nZ) multiple of g(n).
250

— T(n) = 2n%? + 10
~-- g(n) =

200 1

150

100 1




for large enough n,
Exa m p | e T(n) is at most some constant
an _I_ 10 — O(nZ) multiple of g(n).

250
— T(n) = 2n2 + 10 J.-"
=== g =n* 3g(n) =3n2
200 1 === 3g(n) = 3n? I




for large enough n,
Exa m p | e T(n) is at most some constant
an _I_ 10 — O(nZ) multiple of g(n).

250
— T(n) = 2n% + 10 ;,-"
“mmgm) =nt 3g(n) =3n%
2004 === 3g(n) =3n !
n=4 P




Formal definition of Of...) Q

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* Formally,

T(n) = 0(g(n))
“If and only if” PN / “For all”

/Elc,no >0 s.t, Vn = n,,
“There exists” T(Tl) =cC- g

“such that”



T(n) = 0(g(n))

Example -
2 L 2 dc,nyg >0 s.t. Vn = n,,
2n” + 10 = O(n ) T(n) < c- g(n)
250

— T(n) = 2n%? + 10
-=- g =n’

200 1

150

100 1




T(n) = 0(g(n))
Example s

an _|_ 10 — O(nZ) Jc,ny > 0 s.t. Vn = n,,

T(n) <c-g(n)

250
— T(n) =2n*+10 ;’J
- g(n) = n? 3g(n) _ 3n2 J.r'
200 4 === 3g(n) = 3n? o y




Example
2n% + 10 = 0(n?)

T(n) = 0(g(n))
=
dc,nyg > 0 s.t. Vn =n,,

T(n) <c-g)

250
— T(n) = 2n?% + 10 ;
=== g(n) =n? 3g(n) =3n? /S
200 4 === 3g(n) = 3n? J

n=4




Example
2n% + 10 = 0(n?)

250

200 1

= T(n) = 2n?%+ 10

== g(n) =n’

-== 3g(n) = 3n?
n=4

T(n) = 0(g(n))
=
dc,nyg > 0 s.t. Vn = n,,

T(n) <c-g)

Formally:
e Choosec=3

* Choosen,=4
* Then:

vn = 4,

2n% + 10 < 3 - n?



T(n) = 0(g(n))

Same example -
2n? + 10 = 0(n?) e
T e — 2t 10 7 Formally:
-=- g() =n? / . =
w|TEE e |,
* Then:
vn = 2,

2n% +10 < 7 - n?




T(n) = 0(g(n)

O(...) is an upper bound: =

dc,nyg > 0 s.t. Vn = n,,

n = 0 (nz) T(n) <c-gn)

Tin) = Ol{gin))

4.0 4

= T(h) =n
35{—— g =n

g(n) =n?
3.0 -
25 -
20 -
15 -
10 - T(n) =n

0.5 A

0.0 A

000 025 050 075 100 125 150 175 200
]



T(n) = 0(g(n)

O(...) is an upper bound: =

dc,nyg > 0 s.t. Vn = n,,

n = 0 (nz) T(n) <c-gn)
Tin) = Ol{gin))

40 4
35 4 e Choosec=1
3.0  Chooseny=1
25 e Then
20 -

vn = 1,
15 -
10 | n<n

0.5 A

0.0 A




()(...) means a lower bound

* Wesay “T'(n) is Q(g(n))” if, for large enough n,
T(n) is at least as big as a constant multiple of g(n).

* Formally,

T(n) = Q(g(n))
=
dc,ng > 0 s.t. Vn = ny,

c-gn) <T(n)
N\ /

Switched these!!



T(n) = Q(g(n))
Example =

dc,ng >0 s.t. Vn = n,,

nlng(n) — .Q.(Bn) c-g(n) <T(n)

T(n) = Omegalg(n))

o e e Choosec=1/3
T e e Choose ny =2
15 | * Then
vn = 2,
10 -
3n

5 - 3 < nlog,(n)
|]_




©(...) means both!

* We say “T'(n) is ©(g(n))” iff both:

T(n) = 0(g(n)

and

T(n) = Q(g(n))



T(n) = 0(g(n)

NOn‘EXample: Elc,n0>05i. Vn = ny,
n? is not 0(n) ) < - g(m)

* Proof by contradiction:
* Suppose that n? = 0(n).
* Then there is some positive c and n,so that:

vn>n, n®’<c-n
* Divide both sides by n:
vn = n,, n<c

* That’s not true!! What about, say, n =ny +c + 1?
* Thenn =ngy, but, n >c

e Contradiction!



Take-away from examples

* To prove T(n) = O(g(n)), you have to come up with c
and n,yso that the definition is satisfied.

* To prove T(n) is NOT O(g(n)), one way is proof by
contradiction:

e Suppose (to get a contradiction) that someone gives you
a ¢ and an ng so that the definition is satisfied.

e Show that this someone must by lying to you by deriving
a contradiction.



Another example: polynomials

e Sayp(n) = an® + ap_n* 1+ -+ an+a
is a polynomial of degree k = 1.

Try to prove it

* Then: yourself first!
1. pn) = O(nk)

2. p(n)isnot 0(nk1)

* See the book (Al Section 2.3.2) for a proof.

Siggi the Studious Stork



More examples

* n®+3n=0(n>-n?
* n3+3n =Q(n*>—n?)

* n+3n=0(n*-n?

« 3nis NOT O(2")
* log,(n) = Q(In(n))
* log,(n) = ©( 2'°glos(n) )

Work through these
on your own! Also
look at the examples
in the reading!

Siggi the Studious Stork



Some brainteasers

* Are there functions f, g so that NEITHER f = O(g)
nor f = Q(g)?

* Are there non-decreasing functions f, g so that
the above is true?

Ollie the Over-achieving Ostrich



This is my
happy face!

Recap: Asymptotic Notation

* This makes both Plucky and Lucky happy.
* Plucky the Pedantic Penguin is happy because
there is a precise definition.
* Lucky the Lackadaisical Lemur is happy because we
don’t have to pay close attention to all those pesky
constant factors.

e But we should always be careful not to abuse it.

* In the course, (almost) every algorithm we see
will be actually practical, without needing to
take n = n, = 210000000



Back Insertion Sort

1. Does it work?

2. lsit fast? -

Maive vs. non-naive insertion sort

— EIVE VErsion
150 4 = Less naive version

I I I I I
200 400 600 800 1000




Insertion Sort: running time

* Operation count was:

2n? —n — 1 variable assignments
2n?> —n — 1increments/decrements
2n? — 4n + 1 comparisons

* The running time is 0(n?)

Go back to the pseudocode
and convince yourself of this!

—
i

Time{m

175

150

125

100 1

MNaive vs. non-naive insertion sort

{1 = Less naive versicn

— MNaive version

Seems
plausible

200 400 600 800 1000




SLIDE SKIPPED IN CLASS

Insertion Sort: running time

As you get more use

d to this, you won’t have to count up operations anymore.

For example, just looking at the pseudocode below, you might think...

def Insertion
for 1 1in r

current

j i-1

while

A+
In the worst case,
about n iterations
of this inner loop

J
A[j+1]

Sort (A) :
ange (1, len(A)) :
Al1]

>= 0 and A[7]]
1] AlJ]

1

current

> current: = n-1 iterations
of the outer

loop

“There’s O(1) stuff going on inside the inner loop, so
each time the inner loop runs, that’s O(n) work. Then
the inner loop is executed O(n) times by the outer
loop, so that’s O(n?).”




What have we learned?

InsertionSort is an algorithm that
correctly sorts an arbitrary n-element
array in time 0(n?).

Can we do better?



The Plan

* InsertionSort recap
* Worst-case analyisis

e Back to InsertionSort: Does it work?
* Asymptotic Analysis
e Back to InsertionSort: Is it fast?

* MergeSort
e Does it work?
e |s it fast?



Can we do better?

* MergeSort: a divide-and-conquer approach
* Recall from last time:

Divide and
Conquer:

Big problem

Smaller
problem

Smaller
problem

Recurse! Recurse!

Yet smaller Yet smaller
problem problem

Yet smaller Yet smaller
problem problem




MergeSort

slafss]afs]2f7
6laf3]s

Recursive magic! Recursive magic!
a]6]8
How would

do thi
wereer (12 f3alsfef7]s|

Code for the MIERGE step is given in the
Lecture2 IPython notebook, or the textbook Ollie the over-achieving Ostrich




See Lecture 2 IPython notebook for MergeSort Python Code.

MergeSort Pseudocode

MERGESORT(A):
* n = length(A)
cifn<1: If A has length 1,
. return A It is already sorted!

Sort the left half

* L= MERGESORT(A[ 0 : n/2])
* R= MERGESORT(A[n/2 :n])  >ertherentnal
* return MERG E(L,R) Merge the two halves



Two questions

1. Does this work?

2. Is it fast?

Empirically:
1. Seems to work.
2. Seems fast.

175 ~

150 4
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= 100 -

Timel(m
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IPython notebook says...

All sorts of sorts

75

— Maive version of insertion sort
—— Less naive version of insertion sort
Mot very slick implementation of mergeSort
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It works

* Yet another job for...

Proof By
Induction!

Work this out! There’s a skipped slide
with an outline to help you get started. .~




THIS SLIDE SKIPPED IN CLASS

Outline!

* Inductive hypothesis (IH):

Assume that n is a power of 2
for convenience.

“In every recursive call on an array of length at most |,
MERGESORT returns a sorted array.”

* Base case (i=1): a 1-element array is

always sorted, so IH holds for i=1. « MERGESORT(A):

* Inductive step: Need to show: if IH
holds for all O<i<k, then it holds for i=k.

 Aka, need to show that if Land R are
sorted, then MERGE(L,R) is sorted.

* Conclusion: The IH holds for i=1,2,...,n,
and in particular for n.

n =length(A)
ifn<1:

* return A
L = MERGESORT(A[O : n/2])
R = MERGESORT(A[n/2 : n])
return MERGE(L,R)

* Aka, In the top recursive call,
MERGESORT returns a sorted array!

Fill in the inductive step!

HINT: You will need to prove that the
MERGE algorithm is correct, for which

you may need...another proof by

induction!



Assume that n is a power of 2

|tlS fa St for convenience.

CLAIM:
MergeSort runs in time O(nlog(n))

* Proof coming soon.

e But first, how does this compare to InsertionSort?
 Recall InsertionSort ran in time O(n?).



0(nlog(n)) vs. 0(n%)?



All logarithms in this course are base 2 | #

Aside:

Quick log refresher

« Def: log(n) is the number so that 2108 =

* Intuition: log(n) is how many times you need to divide n
by 2 in order to get down to 1.

32’K16’ 8; 4, 2; 1} = |Og(32) =5

|

Halve 5 times

64,32,16,8,4,2,1 = log(64) = 6

[
Halve 6 times log(128) =7
log(256) = 8
* log(n) grows log(512) =9

very slowly!
log(# particles in the universe) < 280



O(nlog n) vs. 0(n?)?

* log(n) grows much more slowly than n
* nlog(n) grows much more slowly than n?

Punchline: A running time of O(n log n) is a
lot better than O(n?)!



Now let’s prove the claim

Assume that n is a power of 2
for convenience.

CLAIM:

MergeSort runs in time O(nlog(n))




Let’s prove the claim

0 Level O

\ Level t
2tsubproblems
at level t.

(Size 1) Level log(n)

Focus on just one of
these sub-problems




How much work in this sub-problem?

Time spent MERGE-ing

the two subproblems

-+

Time spent within the
two sub-problems




How much work in this sub-problem?

Let k=n/2t...

Time spent MERGE-ing
the two subproblems

-+

Time spent within the
two sub-problems



How long does it T
take to MERGE? & Fecture2 notebook
/2 /2
( |
Bnnn
i]2fs]e]s|ef7]s
f

k

MERGE!




Code for the MIERGE
step is given in the
Lecture2 notebook.

How long does it
take to MERGE?

Question: in big-Oh notation, how long does it take to
run MERGE on two lists of size k/27?

Answer: It takes time O(k), since we just walk across the
list once.

«<——There are O(k) operations done at this node.

Take-away: (Not including work at recursive calls).



Recursion tree

0209,9,%,°®
(Size 1)

There are O(k) operations
done at this node.

c®




Recursion tree

Think, Pair,
; Share!
How many operations are done at this level of the
i tree? (Just MERGE-ing subproblems).

How about at this level of the tree?
T (just MERGE-ing, between both n/2-sized

problems)

I z I \ This level?

L This level?

There are O(k) operations
done at this node.

(Size 1)




Recursion tree Size of
# eac
Level | problems probIZm

Amount of work
at this level

1 n O(n)
2 n/2 O(n)

4 n/4 O(n)

2t n/2t O(n)




Total runtime...

* O(n) steps per level, at every level

* log(n) + 1 levels

*O( nlog(n) ) total!

That was the claim!



What have we learned?

* MergeSort correctly sorts a list of n integers in time
O(n log(n) ).

* That’s (asymptotically) better than InsertionSort!



The Plan

* InsertionSort recap

* Worst-case analyisis
e Back to InsertionSort: Does it work?

* Asymptotic Analysis
 Back to InsertionSort: Is it fast?

* MergeSort
* Does it work?

* Is it fast? [

Wrap-Up




Recap

InsertionSort runs in time O(n?)

MergeSort is a divide-and-conquer algorithm that runs
in time O(n log(n))

How do we show an algorithm is correct?
e Today, we did it by induction

How do we measure the runtime of an algorithm?
e Worst-case analysis
* Asymptotic analysis
How do we analyze the running time of a recursive
algorithm?
* One way is to draw a recursion tree.



Next time

* A more systematic approach to analyzing the
runtime of recursive algorithms.

Before next time

* Pre-Lecture Exercise:
e A few recurrence relations (see website)
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