
Lecture 8
Hashing

Announcements

• There will not be new HW posted this week,
because it’s time to study for the…

Midterm!

• Wednesday, Feb 11, 6-9pm!

• Stay tuned for logistics email

• Covers up through last week (Lecture 7)

• Students with course conflicts:

 Email staff as soon as possible

cs161-staff-win2526@cs.stanford.edu

mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu

How to study for the midterm?

• Go over lecture + homework + section + textbook

• DO PRACTICE PROBLEMS.
• Algorithms Illuminated, CLRS have great problems!

• Practice exam(s)

• Office Hours!
• Most effective if you come with specific questions/topics

• Note: some OH have moved earlier in the week

• Friday, here, 1:30-2:50: midterm review session

Outline

• Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in
expectation by using randomness.

• Hash families are the magic behind hash tables.

• Universal hash families are even more magical.

Goal

• We want to store nodes with keys in a data
structure that supports fast
INSERT/DELETE/SEARCH.

• INSERT

• DELETE

• SEARCH

5

data structure

5

4

52

HERE IT IS

node with key “2”

Today:

• Hash tables:
• O(1) expected time INSERT/DELETE/SEARCH

• Worse worst-case performance, but often great in practice.

Last time

• Self balancing trees:
• O(log(n)) deterministic INSERT/DELETE/SEARCH

eg, Python’s dict, Java’s HashSet/HashMap, C++’s unordered_map
Hash tables are used for databases, caching, object representation, …

One way to get O(1) time
• Say all keys are in the set {1,2,3,4,5,6,7,8,9}.

• INSERT:

• DELETE:

• SEARCH:

9 6 3 5

4 5 6 7 8 9

963 5

1 2 3

6

3 2

3 is here.

This is called
“direct addressing”

Problem

• If the keys may come from a “universe”

𝑈 = {1,2, … . , 10000000000}, direct addressing
takes a lot of space.

Solution?

1 2 3 4 5 6 7 8 90

3
4

5
50 1321

101

1

2
3

4

21 345 13 101 50 234 1

INSERT:

Now SEARCH 21

It’s in this bucket somewhere…
go through until we find it.

Put things in buckets based on one digit

22 342 12 102 52 232 2

INSERT:

Problem…

1 2 3 4 5 6 7 8 90

3
4

2

52

12

22

102

2

232

Now SEARCH 22
….this hasn’t made
our lives easier…

Hash tables

• That was an example of a hash table.
• not a very good one, though.

• We will be more clever (and less deterministic) about
our bucketing.

• This will result in fast (expected time)
INSERT/DELETE/SEARCH.

But first! Terminology.
• U is a universe of size M.

• M is really big.

• But only a few (at most n) elements of U are ever going
to show up.
• M is waaaayyyyyyy bigger than n.

• But we don’t know which ones will show up in advance.

All of the keys in the
universe live in this

blob.

Universe U

Only a n keys will ever show up.

Example: U is the set of all strings of at most
280 ascii characters. (128280 of them).

The only ones which I care about are those
which appear as trending hashtags on
twitter. #hashinghashtags
There are way fewer than 128280 of these.

Hash Functions

• A hash function ℎ: 𝑈 → 1, … , 𝑛
is a function that maps elements
of U to buckets 1, ..., n.

All of the keys in the
universe live in this

blob.

Universe U

n buckets1

2

3

Example:
h(x) = least significant
digit of x.

• Note! For this lecture, 𝑛 is both
#buckets and #(things that
might show up).

• That doesn’t need to be the
case, but in general we should
think of those two things as
being on the same order.

Hash Tables (with chaining)

• An array of n buckets.

• Each bucket stores a linked list.
• We can insert into a linked list in time O(1)
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1, … , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=10)

43 22 13 10

INSERT:

43

22

1

2

3

0

…

A hash table consists of:

Hash Tables (with chaining)

• An array of n buckets.

• Each bucket stores a linked list.
• We can insert into a linked list in time O(1)
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1, … , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=10)

43 22 13

For demonstration
purposes only!

This is a terrible hash
function! Don’t use this!

10

INSERT:

13

22

43

10

1

2

3

0

…SEARCH 43:

Scan through all the elements in
bucket h(43) = 3.

DELETE 43:

Search for 43 and remove it.

A hash table consists of:

Aside: Hash tables with open addressing

• The previous slide is about hash tables with chaining.

• There’s also something called “open addressing”

• You don’t need to know about it for this class.

n=9 buckets

1

2

3

9

13 43

…

This is a “chain”

n=9 buckets

1

2

3

9

…

13

43

\end{Aside}

Hash Tables (with chaining)

• Array of n buckets.

• Each bucket stores a linked list.
• We can insert into a linked list in time O(1)
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1, … , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=9)

1

2

3

9

13 22 43

For demonstration
purposes only!

This is a terrible hash
function! Don’t use this!

9

INSERT:

13

22

43

9

…SEARCH 43:

Scan through all the elements in
bucket h(43) = 3.

DELETE 43:

Search for 43 and remove it.

A hash table consists of:

Outline

• Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
• (We still need to figure out how to do the bucketing)

• Hash families are the magic behind hash tables.

• Universal hash families are even more magical.

Interlude: motivation for hash families.

What we want from a hash table
1. We want there to be not many buckets (say, n).

• This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.
• This means it will be fast to SEARCH/INSERT/DELETE

n=9 buckets

1

2

3

9

13

22

43

9

…

n=9 buckets

1

2

3

9

13 43

…

21

9
3

vs.

Worst-case analysis

• Goal: Design a function ℎ: 𝑈 → 1, … , 𝑛 so that:
• No matter what n items of U a bad guy chooses, the

buckets will be balanced.

• Here, balanced means O(1) entries per bucket.

• If we had this*, then we’d achieve our dream of O(1)
INSERT/DELETE/SEARCH

So, does such a function exist?

*Assuming it takes time O(1) to evaluate h(u)

This is impossible!

No deterministic hash
function can defeat
worst-case input!

We really can’t beat the bad guy here.

.

Universe U

h(x)
n buckets

These are all the things that
hash to the first bucket.

• The universe U has M items
• They get hashed into n buckets
• At least one bucket has at least M/n items hashed to it.
• M is waayyyy bigger then n, so M/n is bigger than n.
• Bad guy chooses n of the items that landed in this

very full bucket.

Solution:

Randomness

The game

13 22 43 92

1. An adversary chooses any n items
𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence
of INSERT/DELETE/SEARCH
operations on those items.

2. You, the algorithm,
chooses a random hash
function ℎ: 𝑈 → {1, … , 𝑛}.

3. HASH IT OUT

1

2

3

n

13

22

7

…

43
7

92

What does

random mean
here? Uniformly
random?

Plucky the pedantic penguin

INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92

#hashpuns

Example of a random
hash function
• ℎ: 𝑈 → 1, … , 𝑛 is a uniformly random function.

• That means that h(1) is a uniformly random number
between 1 and n.

• h(2) is also a uniformly random number between 1 and n,
independent of h(1).

• h(3) is also a uniformly random number between 1 and n,
independent of h(1), h(2).

• …

• h(M) is also a uniformly random number between 1 and
n, independent of h(1), h(2), …, h(M-1).

Universe
U

n
 b

u
cke

ts

h

Randomness can help!

Intuitively: The bad guy can’t foil a hash
function that they don’t yet know.

Why not? What if there’s some strategy
that foils a random function with high
probability?

We’ll need to do some analysis…

Lucky the
Lackadaisical Lemur

Plucky the Pedantic
Penguin

Intuitive goal

1

2

3

n

14

22

92

…

43

8

7 ui 32 5 15

It’s bad if lots of items land in ui’s bucket.
So we want not that.

Formal goal

1

2

3

n

14

22

92

…

43

8

𝑢𝑖

• Let ℎ be a random hash function.
• Want: For all ways a bad guy could choose

𝑢1,𝑢2, … , 𝑢𝑛 to put into the hash table, and for

all 𝑖 ∈ 1, … , 𝑛 ,
E[number of items in 𝑢𝑖′s bucket] ≤ 2.

• If that were the case*:
• For each INSERT/DELETE/SEARCH operation

involving 𝑢𝑖,
E[time of operation] = O(1)

We could replace “2”
here with any constant; it

would still be good. But
“2” will be convenient.

This is what we wanted at
the beginning of lecture!

*Assuming h(u) takes O(1) time to compute

Goal:

• Come up with a distribution on hash functions so that:
• For all i=1, …, n,

E[number of items in ui’s bucket] ≤ 2.

Aside

• For all i=1,…,n:

E[number of items in bucket i] ≤ 2

• For all i=1, …, n,

E[number of items in ui ‘s bucket] ≤ 2.
vs

Are these the same?

Think-Pair-Share Terrapins

No! (This was your pre-lecture exercise!)

Aside

• For all i=1,…,n:

E[number of items in bucket i] ≤ 2

1

2

3

n

14 22 92

…

43 8

this happens with
probability 1/n

Suppose that:

1

2

3

n

14 22 92

…

43 8

and this happens
with probability 1/n

etc.

Then E[number of items in bucket i] = 1 for all i.
But E[number of items in 43’s bucket] = n

• For all i=1, …, n,

E[number of items in ui ‘s bucket] ≤ 2.
vs

Goal:

• Come up with a distribution on hash functions so that:
• For all 𝑖 = 1, … , 𝑛,

E[number of items in 𝑢𝑖’s bucket] ≤ 2.

Claim:

• The goal is achieved by a uniformly random hash
function.

Proof of Claim

• 𝐸 =

• = 𝐸 σ𝑗=1
𝑛 𝟏 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = σ𝑗=1
𝑛 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 1/𝑛

• = 1 +
𝑛−1

𝑛
 ≤ 2.

items in
𝑢𝑖’s bucket

• Let h be a uniformly random hash function.
• Then for all 𝑖 = 1, … , 𝑛,

E[number of items in 𝑢𝑖’s bucket] ≤ 2.

Exercise: show this formally!
Intuitively, there are n possibilities
where 𝑢𝑗 can land, and only one

of them is ℎ 𝑢𝑖 .

A uniformly random hash function
leads to balanced buckets

• We just showed:

• For all ways a bad guy could choose 𝑢1,𝑢2, … , 𝑢𝑛 , to
put into the hash table, and for all 𝑖 ∈ 1, … , 𝑛 ,

E[number of items in 𝑢𝑖 ‘s bucket] ≤ 2.

• Which implies*:

• No matter what sequence of operations and items the
bad guy chooses,

E[time of INSERT/DELETE/SEARCH] = O(1)

• So our solution is:

Pick a uniformly random hash function?
*Assuming h(u) takes O(1) time to compute

What’s wrong with this plan?

• Hint: How would you implement (and store) and
uniformly random function ℎ: 𝑈 → {1, … , 𝑛}?

• If h is a uniformly random function:
• That means that h(1) is a uniformly

random number between 1 and n.
• h(2) is also a uniformly random number

between 1 and n, independent of h(1).

• h(3) is also a uniformly random number
between 1 and n, independent of h(1),
h(2).

• …

• h(M) is also a uniformly random number
between 1 and n, independent of h(1),
h(2), …, h(M-1).

Think-Pair-Share Terrapins
1 minute think
1 minute pair and share

A uniformly random hash function
is not a good idea.

• In order to store/evaluate a uniformly random hash
function, we’d use a lookup table:

x h(x)

AAAAAA 1

AAAAAB 5

AAAAAC 3

AAAAAD 3

…

ZZZZZY 7

ZZZZZZ 3

All of the M
things in the

universe

• Each value of h(x) takes
log(n) bits to store.

• Storing M such values
requires Mlog(n) bits.

• In contrast, direct addressing
(initializing a bucket for every
item in the universe) requires
only M bits.

Another way to say this

• There are lots of hash functions.

• There are nM of them.

• Writing down a random one of them takes log(nM)
bits, which is M log(n).

Solution
• Pick from a smaller set of functions.

A cleverly chosen subset
of functions. We call such
a subset a hash family.

We need only log|H| bits
to store an element of H.

H

Outline

• Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in
expectation by using randomness.

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.

Hash families

• A hash family is a collection of hash functions.

”All of the hash functions” is
an example of a hash family.

Example:
a smaller hash family

• H = { function which returns the least sig. digit,

 function which returns the most sig. digit }

• Pick h in H at random.

• Store just one bit
to remember
which we picked.

This is still a terrible idea!
Don’t use this example!

For pedagogical purposes only!

H

The game

19 22 42 92

1. An adversary (who knows H) chooses any n
items 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

2. You, the algorithm, chooses a random hash
function ℎ: 𝑈 → {0, … , 9}. Choose it
randomly from H.

3. HASH IT OUT

0

1

2

9 19

92 22

…

42

0
0

INSERT 19, INSERT 22, INSERT 42,
INSERT 92, INSERT 0, SEARCH 42,
DELETE 92, SEARCH 0, INSERT 92

#hashpuns

h0 = Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h1

This is not a very good hash family

• H = { function which returns least sig. digit,

 function which returns most sig. digit }

• On the previous slide, the adversary could have
been a lot more adversarial…

The game

1. An adversary (who knows H) chooses any n
items 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

2. You, the algorithm, chooses a random hash
function ℎ: 𝑈 → {0, … , 9}. Choose it
randomly from H.

3. HASH IT OUT

0

1

2

9

11

…

101

#hashpuns

h0 = Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h0

11101 121 131141

141

121

131

Outline

• Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in
expectation by using randomness.

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.

How to pick the hash family?

• Definitely not like in that example.

• Let’s go back to that computation from earlier….

H

Proof of Claim

• 𝐸 =

• = 𝐸 σ𝑗=1
𝑛 𝟏 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = σ𝑗=1
𝑛 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 1/𝑛

• = 1 +
𝑛−1

𝑛
 ≤ 2.

items in
𝑢𝑖’s bucket

• Let h be a uniformly random hash function.
• Then for all 𝑖 = 1, … , 𝑛,

E[number of items in 𝑢𝑖’s bucket] ≤ 2.

All that we needed
was that this is 1/n

Universal hash families
• 𝐻 is a universal hash family if, when ℎ is chosen

uniformly at random from 𝐻,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

• Earlier analysis shows: if we draw ℎ uniformly at
random from a universal hash family 𝐻, we will have
expected time* O(1) INSERT/DELETE/SEARCH!

• And if 𝐻 is small, we can store a random ℎ ∈ 𝐻
efficiently!

*assuming h(u) takes O(1) time to compute.

The whole scheme will be

n
 b

u
cke

ts

h

ui

Universe U

Choose h randomly
from H

We can store h using
log|H| bits.

Probably
these

buckets will
be pretty

balanced.

Small universal hash
family H

Universal hash families

• H is a universal hash family if, when h is chosen
uniformly at random from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

Example

• H = the set of all functions ℎ: 𝑈 → 1, … , 𝑛
• We saw this earlier – it corresponds to picking a

uniformly random hash function.

• Unfortunately this H is really really large.

• Universal hash family: if you choose h
randomly from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

Non-example

• h0 = Most_significant_digit

• h1 = Least_significant_digit

• H = {h0, h1}
Prove that this choice of H is
NOT a universal hash family!

2 minutes think
1 minute pair and share

• Universal hash family: if you choose h
randomly from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

Non-example

• h0 = Most_significant_digit

• h1 = Least_significant_digit

• H = {h0, h1}

NOT a universal hash family:

𝑃ℎ∈𝐻 ℎ 101 = ℎ(111) = 1 >
1

10

• Universal hash family: if you choose h
randomly from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

A small universal hash family??

• Here’s one:
• Pick a prime 𝑝 ≥ 𝑀. (And not much bigger than 𝑀)

• Define
𝑓𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ𝑎,𝑏 𝑥 = 𝑓𝑎,𝑏 𝑥 𝑚𝑜𝑑 𝑛

• Define:
𝐻 = { ℎ𝑎,𝑏 𝑥 ∶ 𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

A small universal hash family??

• Here’s one:
• Pick a prime 𝑝 ≥ 𝑀. (And not much bigger than 𝑀)

• Define
𝑓𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ𝑎,𝑏 𝑥 = 𝑓𝑎,𝑏 𝑥 𝑚𝑜𝑑 𝑛

• Define:
𝐻 = { ℎ𝑎,𝑏 𝑥 ∶ 𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

• Claims:
H is a universal hash family.

A random ℎ ∈ 𝐻 takes 𝑂 log 𝑀 bits to store.

See CLRS (Thm 11.5) if you are
curious, but you don’t need to know

why this is true for this class.

A random ℎ ∈ 𝐻 takes 𝑂(log 𝑀) bits to store
(And more!)

• Just need to store two numbers:
• 𝑎 is in {1, … , 𝑝 − 1}

• 𝑏 is in {0, … , 𝑝 − 1}

• Store 𝑎 and 𝑏 with 2log(𝑝) bits

• By our choice of 𝑝 (close to 𝑀), that’s 𝑂(log(𝑀)) bits.

• Also, given 𝑎 and 𝑏, ℎ is fast to evaluate!
• It takes time 𝑂(1) to compute ℎ(𝑥).

• Compare: direct addressing was M bits!
• Example: If M = 128280 , log(M) = 1960.

1,2,3,4,5
𝐻 = { ℎ𝑎,𝑏 𝑥 ∶ 𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

a = 2, b = 1
h

𝐻 = 𝑝 ⋅ 𝑝 − 1 = 𝑂 𝑀2

A small universal hash family??

• Here’s one:
• Pick a prime 𝑝 ≥ 𝑀. (And not much bigger than 𝑀)

• Define
𝑓𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ𝑎,𝑏 𝑥 = 𝑓𝑎,𝑏 𝑥 𝑚𝑜𝑑 𝑛

• Define:
𝐻 = { ℎ𝑎,𝑏 𝑥 ∶ 𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

• Claims:
H is a universal hash family.

A random ℎ ∈ 𝐻 takes 𝑂 log 𝑀 bits to store.

See CLRS (Thm 11.5) if you are
curious, but you don’t need to know

why this is true for this class.

✓

So the whole scheme will be

n
 b

u
cke

ts

ha,b

ui

Universe U

Choose a and b at random
and form the function ha,b

We can store h in space
O(log(M)) since we just need

to store a and b.

Probably
these

buckets will
be pretty

balanced.

𝐻 = { ℎ𝑎,𝑏 𝑥 ∶ 𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

Outline

• Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in
expectation by using randomness.

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.

Recap

Want O(1)
INSERT/DELETE/SEARCH

We studied
this game

13 22 43 92

1. An adversary chooses any n items
𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence
of L INSERT/DELETE/SEARCH
operations on those items.

2. You, the algorithm,
chooses a random hash
function ℎ: 𝑈 → {1, … , 𝑛}.

3. HASH IT OUT

1

2

3

n

13

22

7

…

43
7

92

INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92

Uniformly random h was good

• If we choose h uniformly at random,
for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

• That was enough to ensure that all
INSERT/DELETE/SEARCH operations took O(1)
time in expectation, even on adversarial inputs.

Uniformly random h was bad

• If we actually want to implement this, we have to
store the hash function h.

• That takes a lot of space!
• We may as well have just

initialized a bucket for every
single item in U.

• Instead, we chose a function
randomly from a smaller set.

Universal Hash Families

• If we choose h uniformly at random in H,
for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

This was all we needed to make
sure that the buckets were

balanced in expectation!

• We gave an example of a really small universal hash
family, of size O(M2)

• That means we need only O(log M) bits to store it.

H is a universal hash family if:

Conclusion:

• We can build a hash table that supports
INSERT/DELETE/SEARCH in O(1) expected time

• Requires O(n log(M)) bits of space.
• O(n) buckets

• O(n) items with log(M) bits per item

• O(log(M)) to store the hash function

Hashing a universe of size M into n
buckets, where at most n of the

items in M ever show up.

That’s it for data structures
(for now)

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!

	Slide 1: Lecture 8
	Slide 2: Announcements
	Slide 3: Midterm!
	Slide 4: How to study for the midterm?
	Slide 5: Outline
	Slide 6: Goal
	Slide 7: Today:
	Slide 8: One way to get O(1) time
	Slide 9: Problem
	Slide 10: Solution?
	Slide 11: Problem…
	Slide 12: Hash tables
	Slide 13: But first! Terminology.
	Slide 14: Hash Functions
	Slide 15: Hash Tables (with chaining)
	Slide 16: Hash Tables (with chaining)
	Slide 17: Aside: Hash tables with open addressing
	Slide 18: Hash Tables (with chaining)
	Slide 19: Outline
	Slide 20: What we want from a hash table
	Slide 21: Worst-case analysis
	Slide 22: This is impossible!
	Slide 23: We really can’t beat the bad guy here.
	Slide 24: Solution: Randomness
	Slide 25: The game
	Slide 26: Example of a random hash function
	Slide 27: Randomness can help!
	Slide 28: Intuitive goal
	Slide 29: Formal goal
	Slide 30: Goal:
	Slide 31: Aside
	Slide 32: Aside
	Slide 34: Goal:
	Slide 35: Proof of Claim
	Slide 36: A uniformly random hash function leads to balanced buckets
	Slide 37: What’s wrong with this plan?
	Slide 38: A uniformly random hash function is not a good idea.
	Slide 39: Another way to say this
	Slide 44: Solution
	Slide 45: Outline
	Slide 46: Hash families
	Slide 47: Example: a smaller hash family
	Slide 48: The game
	Slide 49: This is not a very good hash family
	Slide 50: The game
	Slide 51: Outline
	Slide 52: How to pick the hash family?
	Slide 53: Proof of Claim
	Slide 54: Universal hash families
	Slide 55: The whole scheme will be
	Slide 56: Universal hash families
	Slide 57: Example
	Slide 58: Non-example
	Slide 59: Non-example
	Slide 60: A small universal hash family??
	Slide 62: A small universal hash family??
	Slide 63: A random h element of cap H takes cap O open paren log cap M close paren bits to store (And more!)
	Slide 64: A small universal hash family??
	Slide 67: So the whole scheme will be
	Slide 68: Outline
	Slide 69: Want O(1) INSERT/DELETE/SEARCH
	Slide 70: We studied this game
	Slide 71: Uniformly random h was good
	Slide 72: Uniformly random h was bad
	Slide 73: Universal Hash Families
	Slide 74: Conclusion:
	Slide 75: That’s it for data structures (for now)

