
Lecture 8
Hashing



Announcements 

• There will not be new HW posted this week, 
because it’s time to study for the…



Midterm!

• Wednesday, Feb 11, 6-9pm!

• Stay tuned for logistics email

• Covers up through last week (Lecture 7)

• Students with course conflicts:

 Email staff as soon as possible

cs161-staff-win2526@cs.stanford.edu
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How to study for the midterm?

• Go over lecture + homework + section + textbook

• DO PRACTICE PROBLEMS.  
• Algorithms Illuminated, CLRS have great problems!

• Practice exam(s)

• Office Hours!
• Most effective if you come with specific questions/topics

• Note: some OH have moved earlier in the week

• Friday, here, 1:30-2:50: midterm review session



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in 
expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magical.



Goal

• We want to store nodes with keys in a data 
structure that supports fast 
INSERT/DELETE/SEARCH.

• INSERT

• DELETE

• SEARCH

5

data structure

5

4

52

HERE IT IS

node with key “2”



Today:

• Hash tables:
• O(1) expected time INSERT/DELETE/SEARCH

• Worse worst-case performance, but often great in practice.

Last time

• Self balancing trees:
• O(log(n)) deterministic INSERT/DELETE/SEARCH

eg, Python’s dict, Java’s HashSet/HashMap, C++’s unordered_map
Hash tables are used for databases, caching, object representation, …



One way to get O(1) time
• Say all keys are in the set {1,2,3,4,5,6,7,8,9}. 

• INSERT:

• DELETE:

• SEARCH:

9 6 3 5

4 5 6 7 8 9

963 5

1 2 3

6

3 2

3 is here.

This is called 
“direct addressing”



Problem

• If the keys may come from a “universe”

𝑈 =  {1,2, … . , 10000000000}, direct addressing 
takes a lot of space.



Solution?

1 2 3 4 5 6 7 8 90

3
4

5
50 1321

101

1

2
3

4

21 345 13 101 50 234 1

INSERT:

Now SEARCH 21

It’s in this bucket somewhere…
go through until we find it.

Put things in buckets based on one digit



22 342 12 102 52 232 2

INSERT:

Problem…

1 2 3 4 5 6 7 8 90

3
4

2

52

12

22

102

2

232

Now SEARCH 22
….this hasn’t made 
our lives easier…



Hash tables

• That was an example of a hash table.
• not a very good one, though.

• We will be more clever (and less deterministic) about 
our bucketing.

• This will result in fast (expected time) 
INSERT/DELETE/SEARCH.



But first!  Terminology.
• U is a universe of size M.

• M is really big.

• But only a few (at most n) elements of U are ever going 
to show up.
• M is waaaayyyyyyy bigger than n.

• But we don’t know which ones will show up in advance.

All of the keys in the 
universe live in this 

blob.

Universe U

Only a n keys will ever show up.

Example: U is the set of all strings of at most 
280 ascii characters.  (128280 of them).

The only ones which I care about are those 
which appear as trending hashtags on 
twitter.  #hashinghashtags
There are way fewer than 128280 of these.



Hash Functions

• A hash function ℎ: 𝑈 → 1, … , 𝑛  
is a function that maps elements 
of U to buckets 1, ..., n.

All of the keys in the 
universe live in this 

blob.

Universe U

n buckets1

2

3

Example: 
h(x) = least significant 
digit of x.

• Note! For this lecture, 𝑛 is both 
#buckets and #(things that 
might show up).  

• That doesn’t need to be the 
case, but in general we should 
think of those two things as 
being on the same order.



Hash Tables (with chaining)

• An array of n buckets.

• Each bucket stores a linked list.
• We can insert into a linked list in time O(1) 
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1, … , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=10)

43 22 13 10

INSERT:

43

22

1

2

3

0

…

A hash table consists of:



Hash Tables (with chaining)

• An array of n buckets.

• Each bucket stores a linked list.
• We can insert into a linked list in time O(1) 
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1, … , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=10)

43 22 13

For demonstration 
purposes only!

This is a terrible hash 
function!  Don’t use this!

10

INSERT:

13

22

43

10

1

2

3

0

…SEARCH 43:

Scan through all the elements in 
bucket h(43) = 3.

DELETE 43:

Search for 43 and remove it.

A hash table consists of:



Aside: Hash tables with open addressing

• The previous slide is about hash tables with chaining.

• There’s also something called “open addressing”

• You don’t need to know about it for this class.

n=9 buckets

1

2

3

9

13 43

…

This is a “chain”

n=9 buckets

1

2

3

9

…

13

43

\end{Aside}



Hash Tables (with chaining)

• Array of n buckets.

• Each bucket stores a linked list.
• We can insert into a linked list in time O(1) 
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1, … , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=9)

1

2

3

9

13 22 43

For demonstration 
purposes only!

This is a terrible hash 
function!  Don’t use this!

9

INSERT:

13

22

43

9

…SEARCH 43:

Scan through all the elements in 
bucket h(43) = 3.

DELETE 43:

Search for 43 and remove it.

A hash table consists of:



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• (We still need to figure out how to do the bucketing)

• Hash families are the magic behind hash tables.

• Universal hash families are even more magical.

Interlude: motivation for hash families.



What we want from a hash table
1. We want there to be not many buckets (say, n).

• This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.  
• This means it will be fast to SEARCH/INSERT/DELETE

n=9 buckets

1

2

3

9

13

22

43

9

…

n=9 buckets

1

2

3

9

13 43

…

21

9
3

vs.



Worst-case analysis

• Goal: Design a function ℎ: 𝑈 → 1, … , 𝑛  so that:
• No matter what n items of U a bad guy chooses, the 

buckets will be balanced.

• Here, balanced means O(1) entries per bucket.

• If we had this*, then we’d achieve our dream of O(1) 
INSERT/DELETE/SEARCH

So, does such a function exist?

*Assuming it takes time O(1) to evaluate h(u)



This is impossible!

No deterministic hash 
function can defeat 
worst-case input!



We really can’t beat the bad guy here.

.

Universe U

h(x)
n buckets

These are all the things that 
hash to the first bucket.

• The universe U has M items
• They get hashed into n buckets
• At least one bucket has at least M/n items hashed to it.
• M is waayyyy bigger then n, so M/n is bigger than n.
• Bad guy chooses n of the items that landed in this 

very full bucket.



Solution:

Randomness



The game

13 22 43 92

1. An adversary chooses any n items 
𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence 
of INSERT/DELETE/SEARCH 
operations on those items.

2. You, the algorithm, 
chooses a random hash 
function ℎ: 𝑈 → {1, … , 𝑛}.

3. HASH IT OUT

1

2

3

n

13

22

7

…

43
7

92

What does 

random mean 
here?  Uniformly 
random?

Plucky the pedantic penguin

INSERT 13, INSERT 22, INSERT 43, 
INSERT 92, INSERT 7, SEARCH 43, 
DELETE 92, SEARCH 7, INSERT 92

#hashpuns



Example of a random 
hash function
• ℎ: 𝑈 → 1, … , 𝑛  is a uniformly random function.

• That means that h(1) is a uniformly random number 
between 1 and n.

• h(2) is also a uniformly random number between 1 and n, 
independent of h(1).

• h(3) is also a uniformly random number between 1 and n, 
independent of h(1), h(2).

• …

• h(M) is also a uniformly random number between 1 and 
n, independent of h(1), h(2), …, h(M-1).

Universe 
U

n
 b

u
cke

ts

h



Randomness can help!

Intuitively: The bad guy can’t foil a hash 
function that they don’t yet know.

Why not?  What if there’s some strategy 
that foils a random function with high 
probability?

We’ll need to do some analysis…

Lucky the 
Lackadaisical Lemur

Plucky the Pedantic 
Penguin



Intuitive goal

1

2

3

n

14

22

92

…

43

8

7 ui 32 5 15

It’s bad if lots of items land in ui’s bucket.
So we want not that. 



Formal goal

1

2

3

n

14

22

92

…

43

8

𝑢𝑖

• Let ℎ be a random hash function.
• Want: For all ways a bad guy could choose 

𝑢1,𝑢2, … , 𝑢𝑛 to put into the hash table, and for 

all 𝑖 ∈ 1, … , 𝑛 , 
E[ number of items in 𝑢𝑖′s bucket ] ≤ 2.

• If that were the case*: 
• For each INSERT/DELETE/SEARCH operation 

involving 𝑢𝑖, 
E[ time of operation ] = O(1)

We could replace “2” 
here with any constant; it 

would still be good.  But 
“2” will be convenient. 

This is what we wanted at 
the beginning of lecture!

*Assuming h(u) takes O(1) time to compute



Goal:

• Come up with a distribution on hash functions so that:
• For all i=1, …, n, 

E[ number of items in ui’s bucket ] ≤ 2.



Aside

• For all i=1,…,n:

E[ number of items in bucket i ] ≤ 2

• For all i=1, …, n, 

E[ number of items in ui ‘s bucket ] ≤ 2.
vs

Are these the same?

Think-Pair-Share Terrapins

No!  (This was your pre-lecture exercise!)



Aside

• For all i=1,…,n:

E[ number of items in bucket i ] ≤ 2

1

2

3

n

14 22 92

…

43 8

this happens with 
probability 1/n

Suppose that:

1

2

3

n

14 22 92

…

43 8

and this happens 
with probability 1/n

etc.

Then E[ number of items in bucket i ] = 1 for all i.
But E[ number of items in 43’s bucket ] = n

• For all i=1, …, n, 

E[ number of items in ui ‘s bucket ] ≤ 2.
vs



Goal:

• Come up with a distribution on hash functions so that:
• For all 𝑖 = 1, … , 𝑛, 

E[ number of items in 𝑢𝑖’s bucket ] ≤ 2.

Claim:

• The goal is achieved by a uniformly random hash 
function.



Proof of Claim

• 𝐸  = 

• = 𝐸 σ𝑗=1
𝑛 𝟏 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = σ𝑗=1
𝑛 𝑃  ℎ 𝑢𝑖 = ℎ 𝑢𝑗  

•                       = 1 + σ𝑗≠𝑖 𝑃  ℎ 𝑢𝑖 = ℎ 𝑢𝑗

•  = 1 + σ𝑗≠𝑖 1/𝑛

•  = 1 +
𝑛−1

𝑛
 ≤ 2.

# items in 
𝑢𝑖’s bucket

• Let h be a uniformly random hash function.  
• Then for all 𝑖 = 1, … , 𝑛, 

E[ number of items in 𝑢𝑖’s bucket ] ≤ 2.

Exercise: show this formally! 
Intuitively, there are n possibilities 
where 𝑢𝑗  can land, and only one 

of them is ℎ 𝑢𝑖 .



A uniformly random hash function 
leads to balanced buckets

• We just showed:

• For all ways a bad guy could choose 𝑢1,𝑢2, … , 𝑢𝑛 , to 
put into the hash table, and for all 𝑖 ∈ 1, … , 𝑛 , 

E[ number of items in 𝑢𝑖  ‘s bucket ] ≤ 2.

• Which implies*: 

• No matter what sequence of operations and items the 
bad guy chooses, 

E[ time of INSERT/DELETE/SEARCH ] = O(1)

• So our solution is:

Pick a uniformly random hash function?
*Assuming h(u) takes O(1) time to compute



What’s wrong with this plan?

• Hint: How would you implement (and store) and 
uniformly random function ℎ: 𝑈 → {1, … , 𝑛}?

• If h is a uniformly random function:
• That means that h(1) is a uniformly 

random number between 1 and n.
• h(2) is also a uniformly random number 

between 1 and n, independent of h(1).

• h(3) is also a uniformly random number 
between 1 and n, independent of h(1), 
h(2).

• …

• h(M) is also a uniformly random number 
between 1 and n, independent of h(1), 
h(2), …, h(M-1).

Think-Pair-Share Terrapins
1 minute think
1 minute pair and share



A uniformly random hash function 
is not a good idea.

• In order to store/evaluate a uniformly random hash 
function, we’d use a lookup table:

x h(x)

AAAAAA 1

AAAAAB 5

AAAAAC 3

AAAAAD 3

…

ZZZZZY 7

ZZZZZZ 3

All of the M 
things in the 

universe

• Each value of h(x) takes 
log(n) bits to store.

• Storing M such values 
requires Mlog(n) bits. 

• In contrast, direct addressing 
(initializing a bucket for every 
item in the universe) requires 
only M bits.



Another way to say this

• There are lots of hash functions.

• There are nM of them.

• Writing down a random one of them takes log(nM) 
bits, which is M log(n).



Solution
• Pick from a smaller set of functions.

A cleverly chosen subset 
of functions.  We call such 
a subset a hash family.

We need only log|H| bits 
to store an element of H. 

H



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in 
expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.



Hash families

• A hash family is a collection of hash functions.

”All of the hash functions” is 
an example of a hash family.



Example: 
a smaller hash family

• H = { function which returns the least sig. digit,

                   function which returns the most sig. digit }

• Pick h in H at random.

• Store just one bit 
to remember 
which we picked.

This is still a terrible idea!  
Don’t use this example!

For pedagogical purposes only!

H



The game

19 22 42 92

1. An adversary (who knows H) chooses any n 
items 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence 
of INSERT/DELETE/SEARCH operations on 
those items.

2. You, the algorithm, chooses a random hash 
function ℎ: 𝑈 → {0, … , 9}.  Choose it 
randomly from H.

3. HASH IT OUT

0

1

2

9 19

92 22

…

42

0
0

INSERT 19, INSERT 22, INSERT 42, 
INSERT 92, INSERT 0, SEARCH 42, 
DELETE 92, SEARCH 0, INSERT 92

#hashpuns

h0 =  Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h1



This is not a very good hash family

• H = { function which returns least sig. digit,

              function which returns most sig. digit }

• On the previous slide, the adversary could have 
been a lot more adversarial…



The game

1. An adversary (who knows H) chooses any n 
items 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence 
of INSERT/DELETE/SEARCH operations on 
those items.

2. You, the algorithm, chooses a random hash 
function ℎ: 𝑈 → {0, … , 9}.  Choose it 
randomly from H.

3. HASH IT OUT

0

1

2

9

11

…

101

#hashpuns

h0 =  Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h0

11101 121 131141

141

121

131



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in 
expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.



How to pick the hash family?

• Definitely not like in that example.

• Let’s go back to that computation from earlier….

H



Proof of Claim

• 𝐸  = 

• = 𝐸 σ𝑗=1
𝑛 𝟏 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = σ𝑗=1
𝑛 𝑃  ℎ 𝑢𝑖 = ℎ 𝑢𝑗  

•                       = 1 + σ𝑗≠𝑖 𝑃  ℎ 𝑢𝑖 = ℎ 𝑢𝑗

•  = 1 + σ𝑗≠𝑖 1/𝑛

•  = 1 +
𝑛−1

𝑛
 ≤ 2.

# items in 
𝑢𝑖’s bucket

• Let h be a uniformly random hash function.  
• Then for all 𝑖 = 1, … , 𝑛, 

E[ number of items in 𝑢𝑖’s bucket ] ≤ 2.

All that we needed 
was that this is 1/n



Universal hash families
• 𝐻 is a universal hash family if, when ℎ is chosen 

uniformly at random from 𝐻,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 

𝑃ℎ∈𝐻  ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

• Earlier analysis shows: if we draw ℎ uniformly at 
random from a universal hash family 𝐻, we will have 
expected time* O(1) INSERT/DELETE/SEARCH!

• And if 𝐻 is small, we can store a random ℎ ∈ 𝐻 
efficiently!

*assuming h(u) takes O(1) time to compute.



The whole scheme will be

n
 b

u
cke

ts

h

ui

Universe U

Choose h randomly 
from H

We can store h using 
log|H| bits.

Probably 
these 

buckets will 
be pretty 

balanced.

Small universal hash 
family H



Universal hash families

• H is a universal hash family if, when h is chosen 
uniformly at random from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 

𝑃ℎ∈𝐻  ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛



Example

• H = the set of all functions ℎ: 𝑈 → 1, … , 𝑛
• We saw this earlier – it corresponds to picking a 

uniformly random hash function.

• Unfortunately this H is really really large.

• Universal hash family: if you choose h 
randomly from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 

𝑃ℎ∈𝐻  ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛



Non-example

• h0 =  Most_significant_digit

• h1 = Least_significant_digit

• H = {h0, h1}
Prove that this choice of H is 
NOT a universal hash family!

2 minutes think
1 minute pair and share

• Universal hash family: if you choose h 
randomly from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 

𝑃ℎ∈𝐻  ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛



Non-example

• h0 =  Most_significant_digit

• h1 = Least_significant_digit

• H = {h0, h1}

NOT a universal hash family:

𝑃ℎ∈𝐻 ℎ 101 = ℎ(111) = 1 >
1

10

• Universal hash family: if you choose h 
randomly from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 

𝑃ℎ∈𝐻  ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛



A small universal hash family??

• Here’s one:
• Pick a prime 𝑝 ≥ 𝑀.  (And not much bigger than 𝑀)

• Define
𝑓𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ𝑎,𝑏 𝑥 = 𝑓𝑎,𝑏 𝑥  𝑚𝑜𝑑 𝑛

• Define:
𝐻 = { ℎ𝑎,𝑏 𝑥  ∶  𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }



A small universal hash family??

• Here’s one:
• Pick a prime 𝑝 ≥ 𝑀.  (And not much bigger than 𝑀)

• Define
𝑓𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ𝑎,𝑏 𝑥 = 𝑓𝑎,𝑏 𝑥  𝑚𝑜𝑑 𝑛

• Define:
𝐻 = { ℎ𝑎,𝑏 𝑥  ∶  𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

• Claims:
H is a universal hash family.

A random ℎ ∈ 𝐻 takes 𝑂 log 𝑀  bits to store.

See CLRS (Thm 11.5) if you are 
curious, but you don’t need to know 

why this is true for this class.



A random ℎ ∈ 𝐻 takes 𝑂(log 𝑀) bits to store
(And more!)

• Just need to store two numbers: 
• 𝑎 is in {1, … , 𝑝 − 1}

• 𝑏 is in {0, … , 𝑝 − 1}

• Store 𝑎 and 𝑏 with 2log(𝑝) bits

• By our choice of 𝑝 (close to 𝑀), that’s 𝑂(log(𝑀)) bits.

• Also, given 𝑎 and 𝑏, ℎ is fast to evaluate!
• It takes time 𝑂(1) to compute ℎ(𝑥).

• Compare: direct addressing was M bits!
• Example: If M = 128280 , log(M) = 1960.

1,2,3,4,5
𝐻 = { ℎ𝑎,𝑏 𝑥  ∶  𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

a = 2, b = 1
h

𝐻 = 𝑝 ⋅ 𝑝 − 1 = 𝑂 𝑀2



A small universal hash family??

• Here’s one:
• Pick a prime 𝑝 ≥ 𝑀.  (And not much bigger than 𝑀)

• Define
𝑓𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ𝑎,𝑏 𝑥 = 𝑓𝑎,𝑏 𝑥  𝑚𝑜𝑑 𝑛

• Define:
𝐻 = { ℎ𝑎,𝑏 𝑥  ∶  𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

• Claims:
H is a universal hash family.

A random ℎ ∈ 𝐻 takes 𝑂 log 𝑀  bits to store.

See CLRS (Thm 11.5) if you are 
curious, but you don’t need to know 

why this is true for this class.

✓



So the whole scheme will be

n
 b

u
cke

ts

ha,b

ui

Universe U

Choose a and b at random 
and form the function ha,b

We can store h in space 
O(log(M)) since we just need 

to store a and b.

Probably 
these 

buckets will 
be pretty 

balanced.

𝐻 = { ℎ𝑎,𝑏 𝑥  ∶  𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees

• The difference is we can get better performance in 
expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.

Recap



Want O(1) 
INSERT/DELETE/SEARCH



We studied 
this game

13 22 43 92

1. An adversary chooses any n items 
𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any sequence 
of L INSERT/DELETE/SEARCH 
operations on those items.

2. You, the algorithm, 
chooses a random hash 
function ℎ: 𝑈 → {1, … , 𝑛}.

3. HASH IT OUT

1

2

3

n

13

22

7

…

43
7

92

INSERT 13, INSERT 22, INSERT 43, 
INSERT 92, INSERT 7, SEARCH 43, 
DELETE 92, SEARCH 7, INSERT 92



Uniformly random h was good

• If we choose h uniformly at random,
for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 

𝑃ℎ∈𝐻  ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

•  That was enough to ensure that all 
INSERT/DELETE/SEARCH operations took O(1) 
time in expectation, even on adversarial inputs.



Uniformly random h was bad

• If we actually want to implement this, we have to 
store the hash function h.

• That takes a lot of space!
• We may as well have just 

initialized a bucket for every 
single item in U.

• Instead, we chose a function 
randomly from a smaller set.



Universal Hash Families 

• If we choose h uniformly at random in H,
for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 

𝑃ℎ∈𝐻  ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

This was all we needed to make 
sure that the buckets were 

balanced in expectation!

• We gave an example of a really small universal hash 
family, of size O(M2)

• That means we need only O(log M) bits to store it.

H is a universal hash family if:



Conclusion:

• We can build a hash table that supports 
INSERT/DELETE/SEARCH in O(1) expected time

• Requires O(n log(M)) bits of space.
• O(n) buckets 

• O(n) items with log(M) bits per item 

• O(log(M)) to store the hash function

Hashing a universe of size M into n 
buckets, where at most n of the 

items in M ever show up.



That’s it for data structures 
(for now)

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!
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