Lecture &8
Hashing

Announcements

* There will not be new HW posted this week,
because it’s time to study for the...

Midterm!

* Wednesday, Feb 11, 6-9pm!
e Stay tuned for logistics email
* Covers up through last week (Lecture 7)

e Students with course conflicts:

Email staff as soon as possible
cs161-staff-win2526@cs.stanford.edu

mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu
mailto:cs161-staff-win2526@cs.stanford.edu

How to study for the midterm?

e Go over lecture + homework + section + textbook
e DO PRACTICE PROBLEMS.

e Algorithms llluminated, CLRS have great problems!
* Practice exam(s)

e Office Hours!

* Most effective if you come with specific questions/topics
* Note: some OH have moved earlier in the week

* Friday, here, 1:30-2:50: midterm review session

Outline ,

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.

* like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magical.

Goal

* We want to store nodes with keys in a data

structure that supports fast
INSERT/DELETE/SEARCH.

* INSERT .

* DELETE
+ SEARCH

node with key “2”

data structure

HERE IT IS

Last time

* Self balancing trees:
* O(log(n)) deterministic INSERT/DELETE/SEARCH

oday:

 Hash tables: O

* O(1) expected time INSERT/DELETE/SEARCH 6

* Worse worst-case performance, but often great in practice.

eg, Python’s dict, Java’s HashSet/HashMap, C++'s unordered map
Hash tables are used for databases, caching, object representation, ...

This is called

One Way tO get O(:I.) tlme “direct addressing”
 Say all keys are in the set {1,2,3,4,5,6,7,8,9}.

* INSERT:

][] B &)
* DELETE: E
sooor 3] [2]

e N
2
Sf"o %fe

UUHUHHUUH

3 is here.

Problem

* If the keys may come from a “universe”

U = {1,2,...,10000000000}, direct addressing
takes a lot of space.

N

udlbubbbtubivubbiivuuiid
UUUUULUUUUUUUUbt gutt ot

Solution?

Put things in buckets based on one digit

INSERT:

(o] =] [5] o] [(2] [3]

UH LI

It’s in this bucket somewhere...

go through until we find it.
Now SEARCH

17‘£Z
S17€

..this hasn’t mad
Now SEARCH > STt Made

our lives easier...

Hash tables

* That was an example of a hash table.
* not a very good one, though.

* We will be more clever (and less deterministic) about
our bucketing.

* This will result in fast (expected time)
INSERT/DELETE/SEARCH.

But first! Terminology.

 Uis a universe of size M.

 Mis really big.

e But only a few (at most n) elements of U are ever going

to show up.

* M is waaaayyyyyyy bigger than n.
* But we don’t know which ones will show up in advance.

od

All of the keys in the
universe live in this
blob.

Universe U

Only a n keys will ever show up.

Example: U is the set of all strings of at most
280 ascii characters. (128%%° of them).

The only ones which | care about are those
which appear as trending hashtags on
twitter. #hashinghashtags

There are way fewer than 1282 of these.

Hash Functions

* A hash function h:U - {1, ...,n}
is a function that maps elements
of U to buckets 1, ..., n.

Example:

digit of x.

All of the keys in the
universe live in this
blob.

Universe U

h(x) = least significant

Note! For this lecture, n is both
#buckets and #(things that
might show up).

That doesn’t need to be the
case, but in general we should
think of those two things as
being on the same order.

1 S%— n buckets

Hash Tables (with chaining)

A hash table consists of:
* An array of n buckets.

 Each bucket stores a linked list.

* We can insert into a linked list in time O(1)
* To find something in the linked list takes time O(length(list)).

* A hash function h: U - {1, ..., n}.

* For example, h(x) = least significant digit of x.

INSERT: ‘LT

-
'l T7143
0_>

n buckets (say n=10)

Hash Tables (with chaining)

A hash table consists of: .
For demonstration

* An array of n buckets. purposes only!

This is a terrible hash

e Each bucket stores a linked list. cinction] Dont use this!

* We can insert into a linked list in time O(1)
* To find something in the linked list takes time O(length(list)).

* A hash function h: U - {1, ..., n}.

* For example, h(x) = least significant digit of x.

INSERT: ‘LT

=

SEARCH 43: 3—_ _>
Scan through all the elements in N

[Pl

n buckets (say n=10)
Search for 43 and remove it.

Aside: Hash tables with open addressing

* The previous slide is about hash tables with chaining.
* There’s also something called “open addressing”
* You don’t need to know about it for this class.

>
9
=hEk

This is a “chain”

ﬁ¢¢
]

nn
N

b
2un Coy

>[43
o| >

n=9 buckets

9 >

n=9 buckets

\end{Aside}

Hash Tables (with chaining)

A hash table consists of: .
For demonstration

* Array of n buckets. purposes only!
This is a terrible hash

e Each bucket stores a linked list. cinction] Dont use this!

* We can insert into a linked list in time O(1)
* To find something in the linked list takes time O(length(list)).

* A hash function h: U - {1, ..., n}.

* For example, h(x) = least significant digit of x.

INSERT: ‘LT
EINE
SEARCH 43: 3—_ _>
Scan through all the elements in _
DE LE?ET;?(ZB) - ’ >E|_>

n buckets (say n=9)
Search for 43 and remove it.

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.

e (We still need to figure out how to do the Wg)
Interlude: motivation for hash families

* Hash families are the magic behind hash tables.

* Universal hash families are even more magical.

What we want from a hash table

1. We want there to be not many buckets (say, n).
* This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.
* This means it will be fast to SEARCH/INSERT/DELETE

VS. 1

N
nnn

&
\

9 9

n=9 buckets n=9 buckets

*Assuming it takes time O(1) to evaluate h(u)

Worst-case analysis

* Goal: Design a function h: U — {1, ...,n} so that:

* No matter what n items of U a bad guy chooses, the
buckets will be balanced.

* Here, balanced means O(1) entries per bucket.

* If we had this*, then we’d achieve our dream of O(1)
INSERT/DELETE/SEARCH

So, does such a function exist?

No deterministic hash
function can defeat
worst-case input!

We really can’t beat the bad guy here.

* The universe U has M items

* They get hashed into n buckets

* At least one bucket has at least M/n items hashed to it.

* M is waayyyy bigger then n, so M/n is bigger than n.

* Bad guy chooses n of the items that landed in this
very full bucket.

—— N buckets

These are all the things that
hash to the first bucket.

Universe U

Solution:
Randomness

g

What does
random mean

The game ndom e . 2. You, the algorithm,

random? chooses a random hash
function h: U - {1, ...,n}.

Plucky the pedantic penguin
1. An adversary chooses any n items 0
Uy, Uy, ..., U, € U, and any sequence @
of INSERT/DELETE/SEARCH
operations on those items.

E E E E - 3. 1I-IASH IT #hashpuns

INSERT 13, INSERT 22, INSERT 43,
R INSERT 92, INSERT 7, SEARCH 43, 2
DELETE 92, SEARCH 7, INSERT 92

>
n
~
o)
N

Example of a random
hash function

.
@F{:

 h:U - {1, ...,n} is a uniformly random function.

* That means that h(1) is a uniformly random number
between 1 and n.

h(2) is also a uniformly random number between 1 and n,
independent of h(1).

h(3) is also a uniformly random number between 1 and n,
independent of h(1), h(2).

h(M) is also a uniformly random number between 1 and
n, independent of h(1), h(2), ..., h(M-1).

|
SENRI[eRY

Randomness can help!

Intuitively: The bad guy can’t foil a hash
function that they don’t yet know.

N -

Lucky the
Lackadaisical Lemur

Why not? What if there’s some strategy
that foils a random function with high
probability?

™

Plucky the Pedantic
Penguin

We’ll need to do some analysis...

Intuitive goal

It’s bad if lots of items land in u/’s bucket.
So we want not that.

We could replace “2”
here with any constant; it

FO rm a ‘ goa | would still be good. But

“2” will be convenient.
* Let h be a random hash function.
* Want: For all ways a bad guy could choose
Uy Uy, ..., Uy to putinto the hash table, and for
alli € {1, ...,n},
E[number of items in u;'s bucket] < 2.

* |f that were the case*:
* For each INSERT/DELETE/SEARCH operation

involving u;,
E[time of operation] = O(1)

o

This is what we wanted at
8

the beginning of lecture!
*Assuming h(u) takes O(1) time to compute 8 &

Goal:

 Come up with a distribution on hash functions so that:
e Foralli=1, ..., n,

E[number of items in us bucket] < 2.

Aside

 Foralli=1, ..., n,

E[number of items in u, ‘s bucket] < 2.
VS

e Foralli=1,...,n:

E[number of items in bucketi] <2

Are these the same?

&S -8

Think-Pair-Share Terrapins

No! (This was your pre-lecture exercise!)

Aside

 Foralli=1, ..., n,

VS

E[number of items in u. ‘s bucket] < 2.

For all i=1,...,n:

E[number of items in bucketi] <2

Suppose that:

N
AN

this happens with

>S5
L |

> — probability 1/n
E N i
[= B
. and this happens
> 3 _9 otc with probability 1/n
. __9 Then E[number of items in bucket i] = 1 for all i.

But E[number of itemsin 43’s bucket] = n

Goal:

 Come up with a distribution on hash functions so that:
e Foralli=1,..,n,

E[number of items in u,’s bucket] < 2.

Claim:

* The goal is achieved by a uniformly random hash
function.

Proof of Claim

. Ef

* Let h be a uniformly random hash function.

#items in] .
u;’s bucket

e Thenforalli =1,...,n,

E[number of items in u;’s bucket] < 2.

= E[X7_; 1{h(w;) = h(w)}]

= }'1:1 P{ h(u;)

= h(y)}

=1+ Zj;ti P{ h(u;) = h(uJ)}

n-—1

=14+— < 2.
n

T

Exercise: show this formally!
Intuitively, there are n possibilities
where u; can land, and only one

of them is h(u;).

A uniformly random hash function
leads to balanced buckets

* We just showed:

* For all ways a bad guy could choose u, u,, ..., u,, to
put into the hash table, and forall i € {1, ..., n},

E[number of items in u; ‘s bucket] < 2.
 Which implies*:
 No matter what sequence of operations and items the
bad guy chooses,

E[time of INSERT/DELETE/SEARCH] = O(1)
e So our solution is:

Pick a uniformly random hash function?

*Assuming h(u) takes O(1) time to compute

What’s wrong with this plan?

* Hint: How would you implement (and store) and
uniformly random function h: U - {1, ...,n}?

between 1 and n, independent of h(1).

Think-Pair-Share Terrapins * h(3) is also a uniformly random number

1 minute think between 1 and n, independent of h(1),
1 minute pair and share h(2).

* If his a uniformly random function:

* That means that h(1) is a uniformly
random number between 1 and n.

* h(2) is also a uniformly random number

e h(M) is also a uniformly random number
between 1 and n, independent of h(1),
h(2), ..., h(M-1).

A uniformly random hash function
IS not a good idea.

* [n order to store/evaluate a uniformly random hash
function, we’d use a lookup table:

—m e Each value of h(x) takes

AAAAAA log(n) bits to store.
AR 5 e Storing M such values
AAAAAC 3 ' '
All of the M requires Mlog(n) bits.
things in the — AAAAAD 3 . .
universe * In contrast, direct addressing
(initializing a bucket for every
27777Y 7 . . : .
item in the universe) requires
_ Lerees 3 only M bits.

Another way to say this

* There are lots of hash functions.
* There are nM of them.

* Writing down a random one of them takes log(n™)
bits, which is M log(n).

Solution

* Pick from a smaller set of functions.

A cleverly chosen subset
of functions. We call such
a subset a hash family.

We need only log[H| bits
to store an element of H.

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
* like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

Hash families

* A hash family is a collection of hash functions.

"All of the hash functions” is
an example of a hash family.

This is still a terrible ideal!

Exa m p | e Don’t use this example!
. For pedagogical purposes only!
a smaller hash family

 H = { function which returns the least sig. digit,

function which returns the most sig. digit }
* Pick hin H at random.
* Store just one bit

to remember
which we picked.

The ga me 2. You, the algorithm, chooses a random hash
h, = Most_significant_digit function h: U - {0, ..., 9}. Choose it
h, = Least_significant_digit randomly from H.

H = {hg, h;} 0 e

1. Anadversary (who knows H) chooses any n | pICkEd hl
items uq, Uy, ..., u, € U, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

51|21 1| R
|]2

INSERT 19, INSERT 22, INSERT 42,
- INSERT 92, INSERT O, SEARCH 42, 1
DELETE 92, SEARCH O, INSERT 92

This is not a very good hash family

* H = { function which returns least sig. digit,
function which returns most sig. digit }

* On the previous slide, the adversary could have
been a lot more adversarial...

The ga me 2. You, the algorithm, chooses a random hash
h, = Most_significant_digit function h: U - {0, ..., 9}. Choose it
h, = Least_significant_digit randomly from H.

H = {hg, h;} 0 e

| picked h,

1. An adversary (who knows H) chooses any n
items uq, Uy, ..., u, € U, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

3. HASH IT OUT ghashpuns

-

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
* like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

How to pick the hash family?

* Definitely not like in that example.
* Let’s go back to that computation from earlier....

)

* Let h be a uniformly random hash function.

PrOOf Of C‘alm e Thenforalli=1,...,n,

E[number of items in u;’s bucket] < 2.

. E[zii’tsekr)r;sch;t] —

. = E|¥7_; 1{h(w) = h(y;)}]

. = ?:1 P{ h(ul) = h(uli).}_

. =1+ 2jx P{ h(u;) = h(uf)D
. =1+ T 1/n X

° =1 + — < 2 All that we needed
n was that thisis 1/n

*assuming h(u) takes O(1) time to compute.

Universal hash families

* H is a universal hash family if, when h is chosen
uniformly at random from H,

forallu;,,u; e U withu; # u;,

Pren h(w;) = h(w)} < %

e Earlier analysis shows: if we draw h uniformly at
random from a universal hash family H, we will have
expected time* O(1) INSERT/DELETE/SEARCH!

 And if H is small, we can store arandom h € H
efficiently!

Small universal hash

The whole scheme will be family H ™\

Choose h randomly G

from H

We can store h using

log|H| bits.
Probably
| 5 these
o buckets will
— % be pretty
o e balanced.

Universe U

Universal hash families

* His a universal hash family if, when h is chosen
uniformly at random from H,

forallu;,u; e U withu; # u;,

Preni h(w) = h(w;)} < %

* Universal hash family: if you choose h
randomly from H,

Example forallui,uj elU withu; * Uj,

1
Prenf h(w) = h(w;)} < -

* H = the set of all functions h: U — {1, ..., n}

* We saw this earlier — it corresponds to picking a
uniformly random hash function.

* Unfortunately this H is really really large.

* Universal hash family: if you choose h
randomly from H,

Non_example forallui,quU withui;tuj,

1
Prenf h(w) = h(w;)} < -

* h, = Most_significant_digit
* h, = Least_significant_digit
* H={h,, h}

Prove that this choice of H is
NOT a universal hash family!
2 minutes think
1 minute pair and share

N

* Universal hash family: if you choose h
randomly from H,

Non_example forallul-,quU withui;tuj,

1
Pren{ h(w) = h(w)} < -

* h, = Most_significant_digit
* h, = Least_significant_digit
* H={h,, h}

NOT a universal hash family:

P cy{h(101) = h(111)} =1 > 1—10

A small universal hash family??

* Here's one:
* Picka prime p = M. (And not much bigger than M)

* Define
fap(x) =ax+b modp

hap(x) = fap(x) modn
* Define:
H={hgp(x) : a€{l,..,p—1},be{0,..,p—1}}

A small universal hash family??

* Here's one:
* Picka prime p = M. (And not much bigger than M)

* Define
fap(x) =ax+b modp

hap(x) = fap(x) modn
* Define:
H={hgp(x) : a€{l,..,p—1},be{0,..,p—1}}

See CLRS (Thm 11.5) if you are
. | . . curious, but you don’t need to know
Claims: why this is true for this class.

H is a universal hash family.‘/
B A random h € H takes O (log M) bits to store.

A random h € H takes O(log M) bits to store
(And morel)

O

H={hyp(x) :a€{l,..,.p—1},b€{0,..,p—1}}
Hl=p-(p—1) =0(M?)

* Just need to store two numbers:
e aisin{l,..,p—1}
* bisin{0,..,p — 1}
» Store a and b with 2log(p) bits
* By our choice of p (close to M), that’s O (log(M)) bits.

 Also, given a and b, h is fast to evaluate!
* It takes time O (1) to compute h(x).

* Compare: direct addressing was M bits!
* Example: If M = 128280 |og(M) = 1960.

A small universal hash family??

* Here’s one:

* Picka primep = M. (And not much bigger than M)

* Define
fap(x) =ax+b modp

hap(x) = fap(x) modn
e Define:

H={hgp(x) : a€{l,..,p—1},be{0,..,p—1}}

See CLRS (Thm 11.5) if you are

. | . . curious, but you don’t need to know
Claims: why this is true for this class.

is a universal hash family.‘/
A random h € H takes O(log M) bits to store.

H={hgpx) : a€{l,..,p—1}L,b€e{0,..,p—1
So the whole scheme will be N

Choose a and b at random 6

and form the function h,),

We can store h in space
O(log(M)) since we just need
to store a and b.

Probably

| . these
o buckets will

— % be pretty
o o balanced.

Universe U

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.

* like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

Recap 4

Want O(1)
INSERT/DELETE/SEARCH

We StUdied 2. You, the algorithm,

. chooses a random hash
thIS game function h: U — {1, ..

1. An adversary chooses any n items
Uy, Uy, ..., U, € U, and any sequence
of L INSERT/DELETE/SEARCH
operations on those items.

HEEE- 1I-IASH IT OUT

INSERT 13, INSERT 22, INSERT 43,
A INSERT 92, INSERT 7, SEARCH 43, 2
’ DELETE 92, SEARCH 7, INSERT 92

'm.m
GEE
¢

>
n
~
o)
N

Uniformly random h was good

* If we choose h uniformly at random,
forall u;,u; € U withu; # u;,

1
Pren{ h(w) = h(w;)} < -
* That was enough to ensure that all

INSERT/DELETE/SEARCH operations took O(1)
time in expectation, even on adversarial inputs.

Uniformly random h was bad

* If we actually want to implement this, we have to
store the hash function h.

e That takes a lot of space!

* We may as well have just
initialized a bucket for every
single item in U.

* Instead, we chose a function
randomly from a smaller set.

Universal Hash Families

H is a universal hash family if:

* If we choose h uniformly at random in H,
for all u;,ui €U with u; # uj,

1
Pren{ h(w) = h(w;)} < -

This was all we needed to make
sure that the buckets were
balanced in expectation!

* We gave an example of a really small universal hash
family, of size O(M?)

* That means we need only O(log M) bits to store it.

Hashing a universe of size M into n
buckets, where at most n of the
items in M ever show up.

Conclusion:

* We can build a hash table that supports
INSERT/DELETE/SEARCH in O(1) expected time

* Requires O(n log(M)) bits of space.
* O(n) buckets
* O(n) items with log(M) bits per item
* O(log(M)) to store the hash function

That's it for data structures
(for now)

Achievement unlocked

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!

	Slide 1: Lecture 8
	Slide 2: Announcements
	Slide 3: Midterm!
	Slide 4: How to study for the midterm?
	Slide 5: Outline
	Slide 6: Goal
	Slide 7: Today:
	Slide 8: One way to get O(1) time
	Slide 9: Problem
	Slide 10: Solution?
	Slide 11: Problem…
	Slide 12: Hash tables
	Slide 13: But first! Terminology.
	Slide 14: Hash Functions
	Slide 15: Hash Tables (with chaining)
	Slide 16: Hash Tables (with chaining)
	Slide 17: Aside: Hash tables with open addressing
	Slide 18: Hash Tables (with chaining)
	Slide 19: Outline
	Slide 20: What we want from a hash table
	Slide 21: Worst-case analysis
	Slide 22: This is impossible!
	Slide 23: We really can’t beat the bad guy here.
	Slide 24: Solution: Randomness
	Slide 25: The game
	Slide 26: Example of a random hash function
	Slide 27: Randomness can help!
	Slide 28: Intuitive goal
	Slide 29: Formal goal
	Slide 30: Goal:
	Slide 31: Aside
	Slide 32: Aside
	Slide 34: Goal:
	Slide 35: Proof of Claim
	Slide 36: A uniformly random hash function leads to balanced buckets
	Slide 37: What’s wrong with this plan?
	Slide 38: A uniformly random hash function is not a good idea.
	Slide 39: Another way to say this
	Slide 44: Solution
	Slide 45: Outline
	Slide 46: Hash families
	Slide 47: Example: a smaller hash family
	Slide 48: The game
	Slide 49: This is not a very good hash family
	Slide 50: The game
	Slide 51: Outline
	Slide 52: How to pick the hash family?
	Slide 53: Proof of Claim
	Slide 54: Universal hash families
	Slide 55: The whole scheme will be
	Slide 56: Universal hash families
	Slide 57: Example
	Slide 58: Non-example
	Slide 59: Non-example
	Slide 60: A small universal hash family??
	Slide 62: A small universal hash family??
	Slide 63: A random h element of cap H takes cap O open paren log cap M close paren bits to store (And more!)
	Slide 64: A small universal hash family??
	Slide 67: So the whole scheme will be
	Slide 68: Outline
	Slide 69: Want O(1) INSERT/DELETE/SEARCH
	Slide 70: We studied this game
	Slide 71: Uniformly random h was good
	Slide 72: Uniformly random h was bad
	Slide 73: Universal Hash Families
	Slide 74: Conclusion:
	Slide 75: That’s it for data structures (for now)

