

Lecture 8

Hashing

Announcements

- There will not be new HW posted this week, because it's time to study for the...

Midterm!

- Wednesday, Feb 11, 6-9pm!
- Stay tuned for logistics email
- Covers up through last week (Lecture 7)
- Students with course conflicts:
Email staff as soon as possible
cs161-staff-win2526@cs.stanford.edu

How to study for the midterm?

- Go over lecture + homework + **section** + textbook
- DO PRACTICE PROBLEMS.
 - Algorithms Illuminated, CLRS have great problems!
 - Practice exam(s)
- Office Hours!
 - Most effective if you come with specific questions/topics
 - Note: some OH have moved earlier in the week
- Friday, here, 1:30-2:50: midterm review session

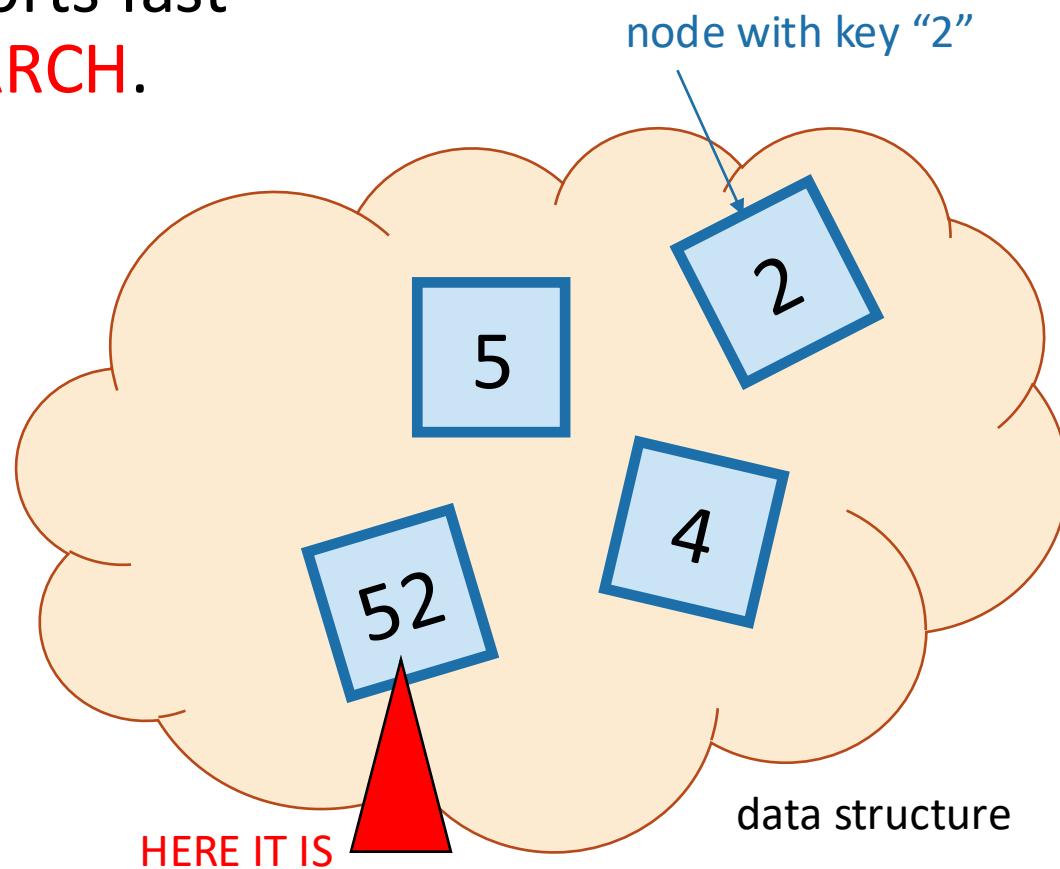
Outline

- **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- **Hash families** are the magic behind hash tables.
- **Universal hash families** are even more magical.

Goal

- We want to store nodes with keys in a data structure that supports fast **INSERT/DELETE/SEARCH**.

- **INSERT** 5
- **DELETE** 4
- **SEARCH** 52



Last time

- Self balancing trees:
 - $O(\log(n))$ deterministic **INSERT/DELETE/SEARCH**

Today:

- Hash tables:
 - $O(1)$ expected time **INSERT/DELETE/SEARCH**
- Worse worst-case performance, but often great in practice.

eg, Python's `dict`, Java's `HashSet/HashMap`, C++'s `unordered_map`

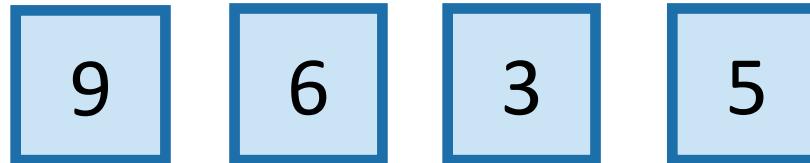
Hash tables are used for databases, caching, object representation, ...

This is called
“direct addressing”

One way to get $O(1)$ time

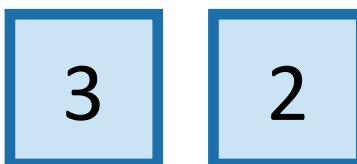
- Say all keys are in the set $\{1,2,3,4,5,6,7,8,9\}$.

- **INSERT:**



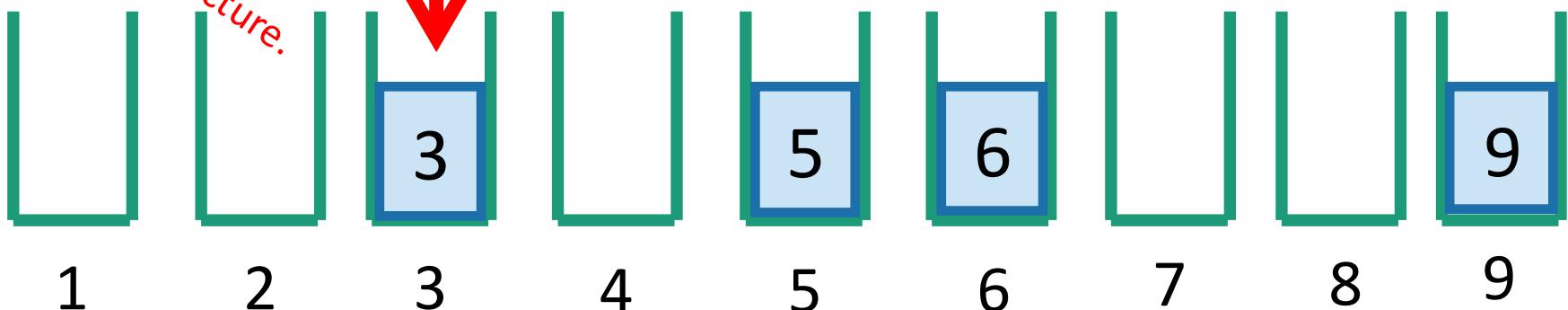
- **DELETE:**

- **SEARCH:**



2 isn't in
the data
structure.

3 is here.

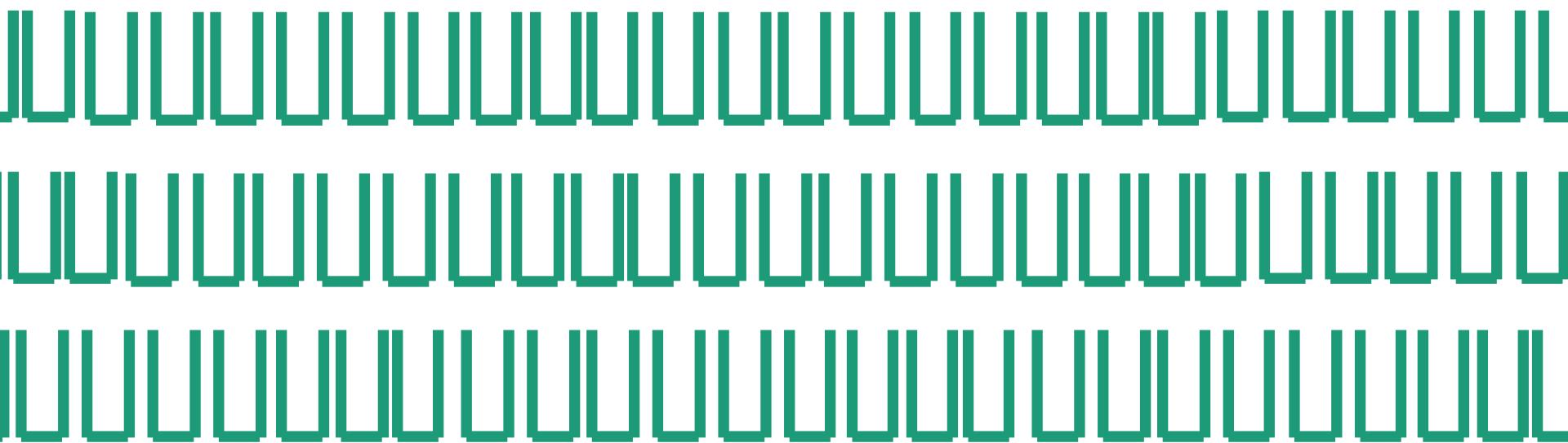


Problem

*The universe is
really big!*

- If the keys may come from a “universe”

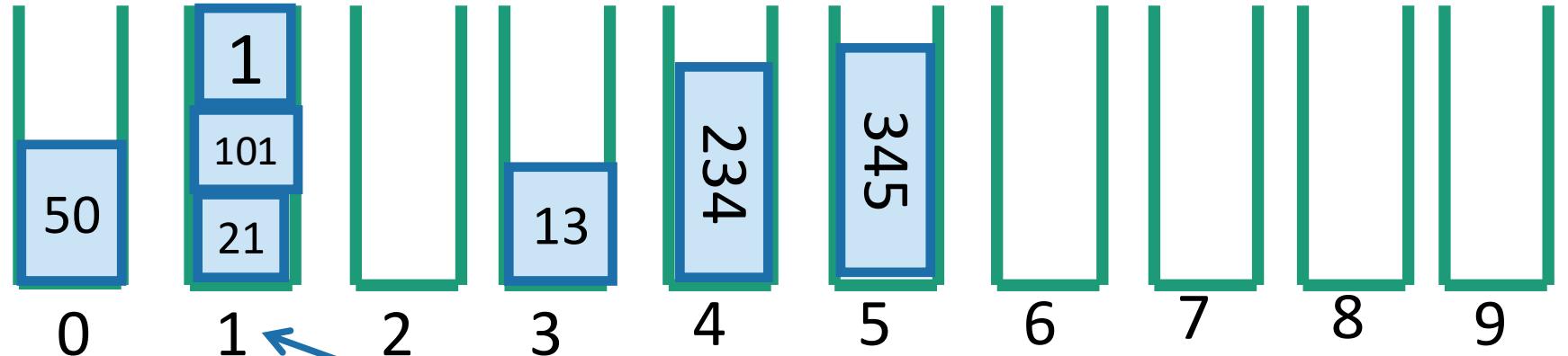
$U = \{1, 2, \dots, 10000000000\}$, direct addressing takes a lot of space.



Solution?

Put things in buckets based on one digit

INSERT:

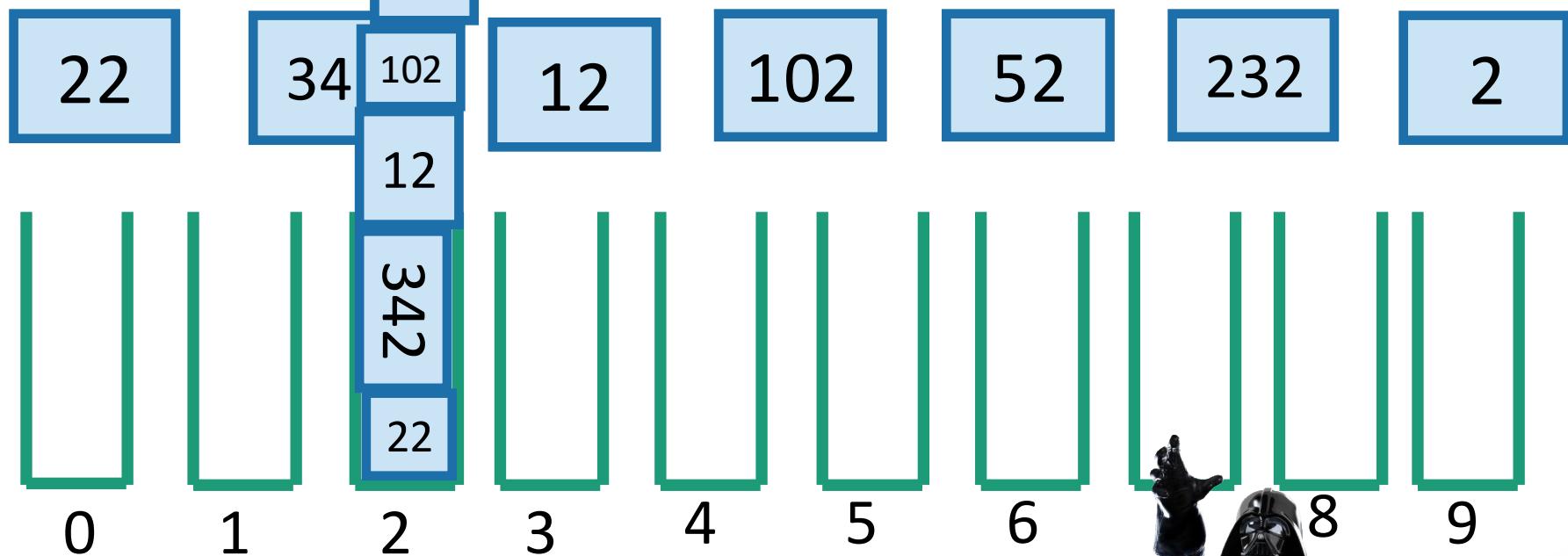


It's in this bucket somewhere...
go through until we find it.

Now SEARCH

Problem

INSERT:



Now SEARCH

22

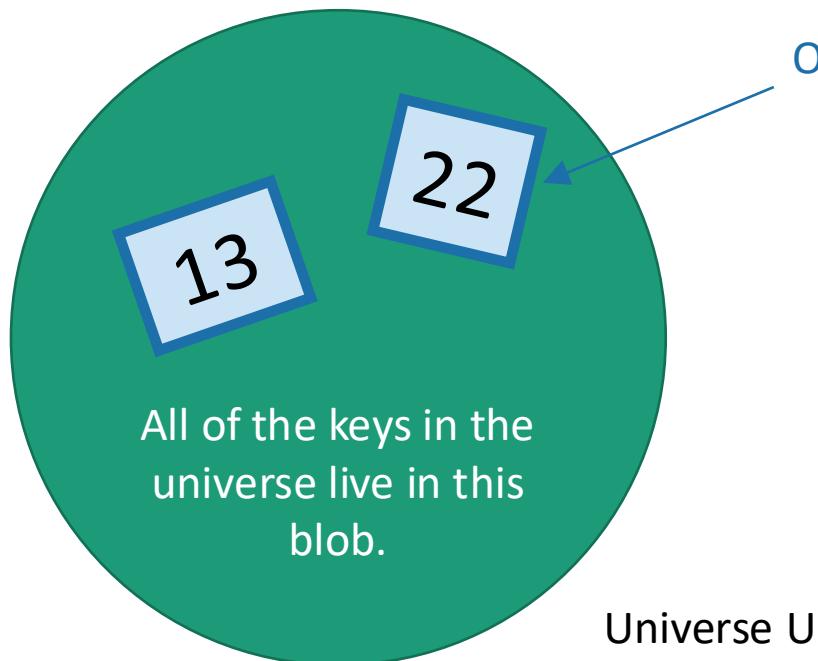
....this hasn't made
our lives easier...

Hash tables

- That was an example of a hash table.
 - not a very good one, though.
- We will be **more clever** (and less deterministic) about our bucketing.
- This will result in fast (expected time)
INSERT/DELETE/SEARCH.

But first! Terminology.

- U is a *universe* of size M .
 - M is **really big**.
- But only a few (at most n) elements of U are ever going to show up.
 - M is **waaaayyyyyy bigger than n** .
- But we don't know which ones will show up in advance.



Only n keys will ever show up.

Example: U is the set of all strings of at most 280 ascii characters. (128²⁸⁰ of them).

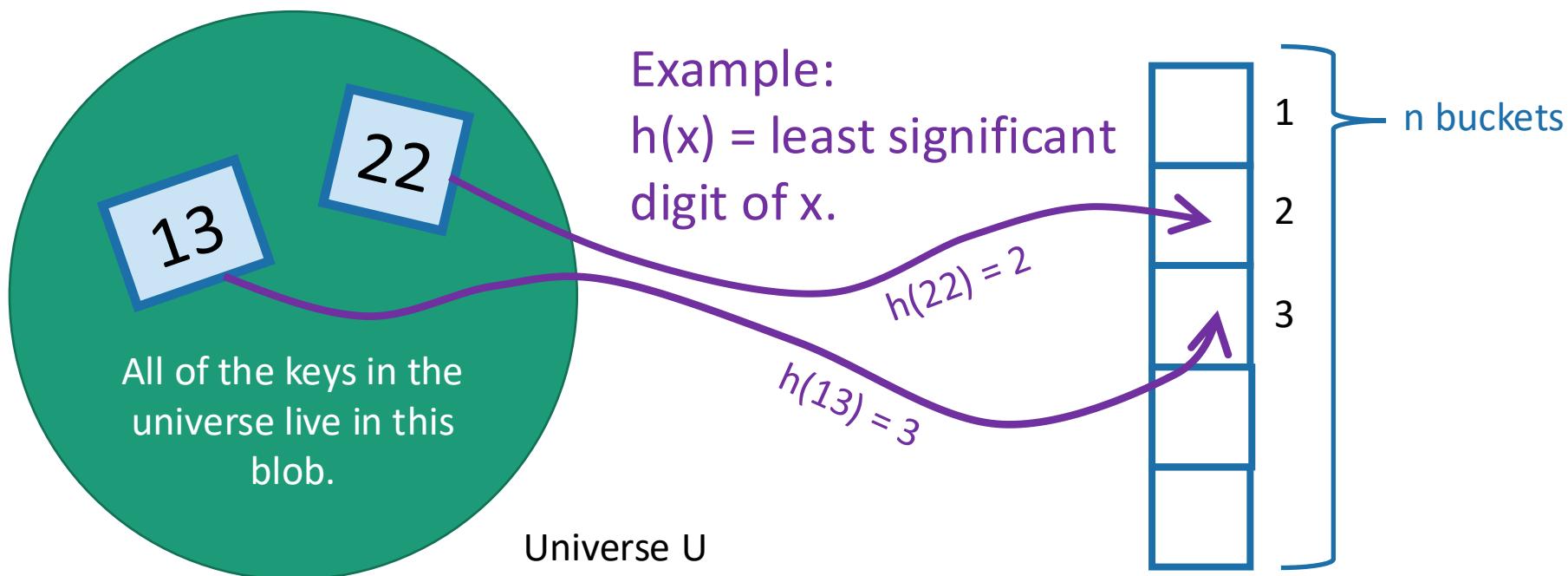
The only ones which I care about are those which appear as trending hashtags on twitter. **#hashinghashtags**

There are way fewer than 128²⁸⁰ of these.

Hash Functions

- A *hash function* $h: U \rightarrow \{1, \dots, n\}$ is a function that maps elements of U to buckets $1, \dots, n$.

- **Note!** For this lecture, n is **both** #buckets and #(things that might show up).
- That doesn't need to be the case, but in general we should think of those two things as being on the same order.

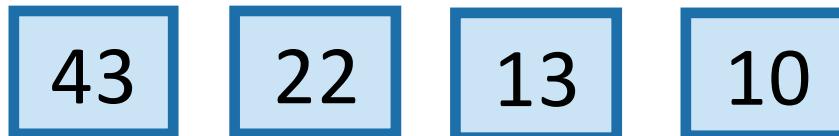
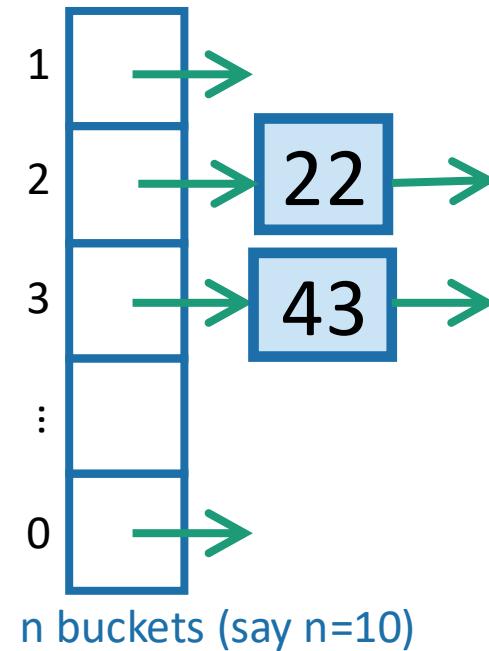


Hash Tables (with chaining)

A **hash table** consists of:

- An array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- A hash function $h: U \rightarrow \{1, \dots, n\}$.
 - For example, $h(x) = \text{least significant digit of } x$.

INSERT:



Hash Tables (with chaining)

A **hash table** consists of:

- An array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- A hash function $h: U \rightarrow \{1, \dots, n\}$.
 - For example, $h(x) = \text{least significant digit of } x$.

For demonstration purposes only!

This is a terrible hash function! Don't use this!

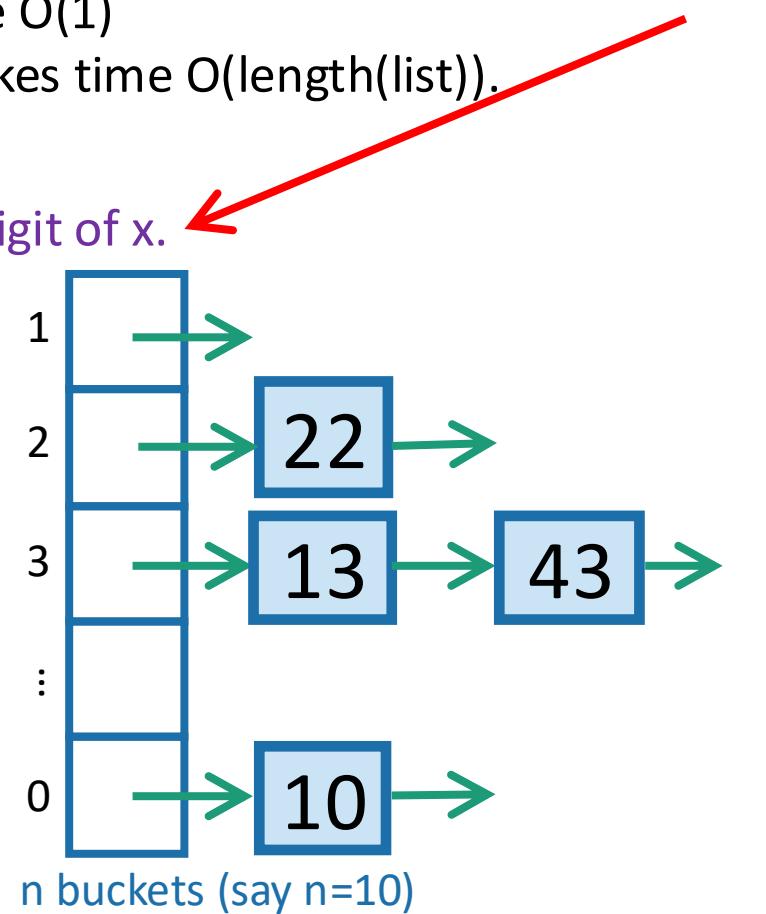
INSERT:

SEARCH 43:

Scan through all the elements in bucket $h(43) = 3$.

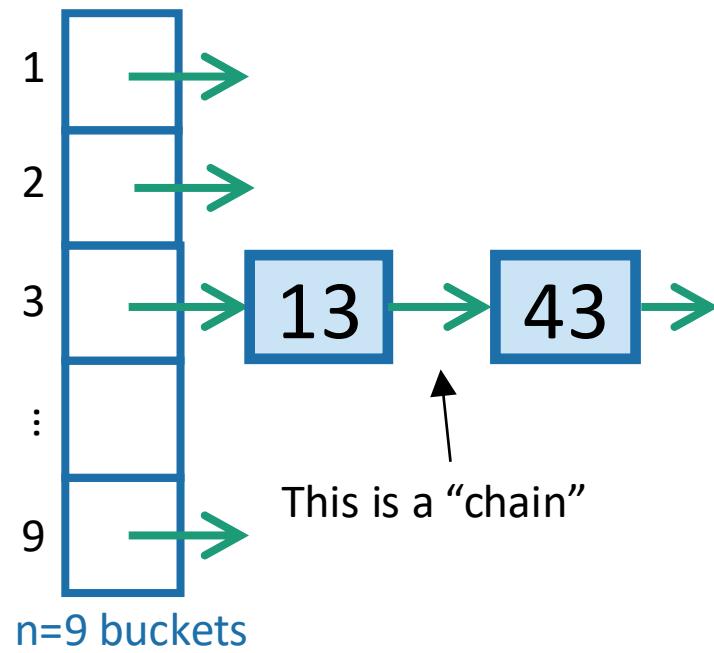
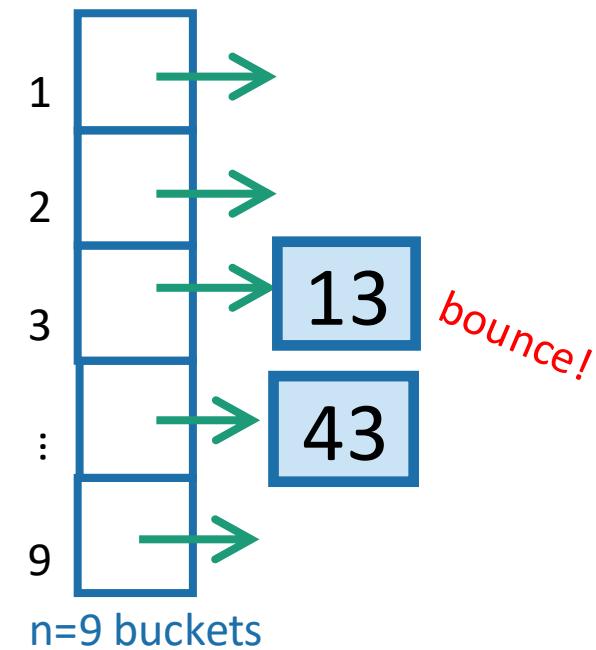
DELETE 43:

Search for 43 and remove it.



Aside: Hash tables with open addressing

- The previous slide is about hash tables with chaining.
- There's also something called "open addressing"
- You don't need to know about it for this class.



\end{Aside}

Hash Tables (with chaining)

A **hash table** consists of:

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- A hash function $h: U \rightarrow \{1, \dots, n\}$.
 - For example, $h(x) = \text{least significant digit of } x$.

For demonstration purposes only!

This is a terrible hash function! Don't use this!

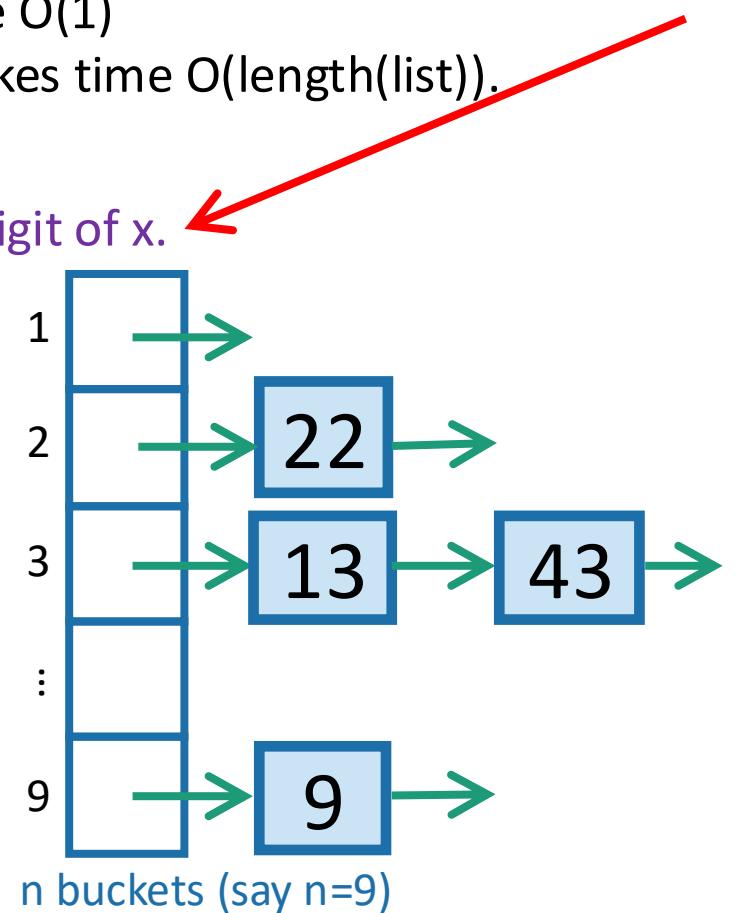
INSERT:

SEARCH 43:

Scan through all the elements in bucket $h(43) = 3$.

DELETE 43:

Search for 43 and remove it.



Outline

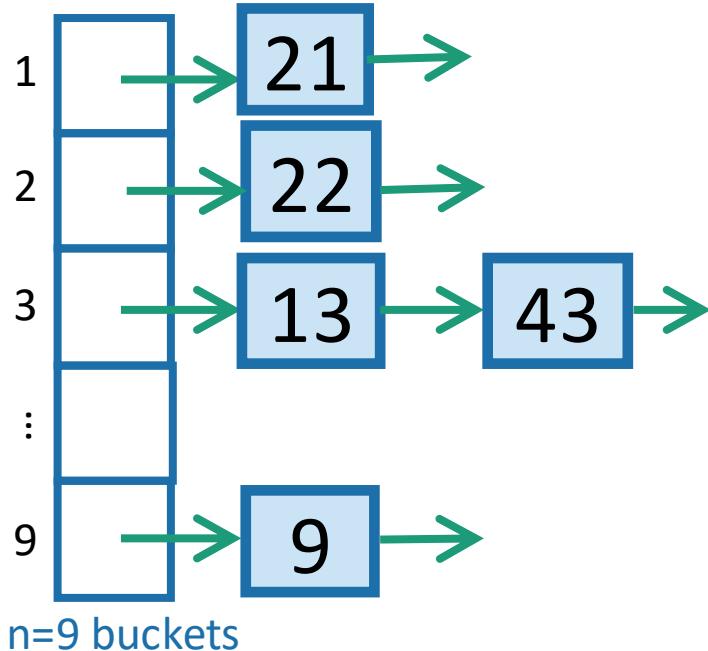
- **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 - (We still need to figure out how to do the **bucketing**)

Interlude: motivation for hash families.

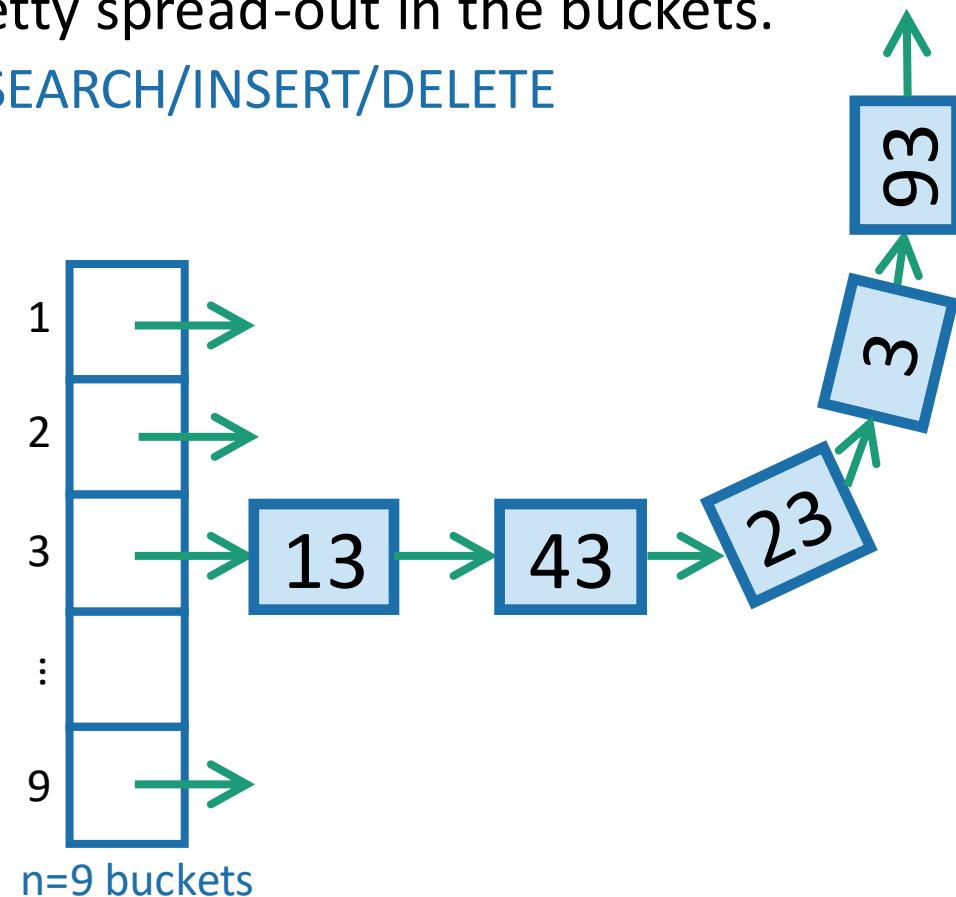
- **Hash families** are the magic behind hash tables.
- **Universal hash families** are even more magical.

What we want from a hash table

1. We want there to be not many buckets (say, n).
 - This means we don't use too much space
2. We want the items to be pretty spread-out in the buckets.
 - This means it will be fast to **SEARCH/INSERT/DELETE**



vs.



Worst-case analysis

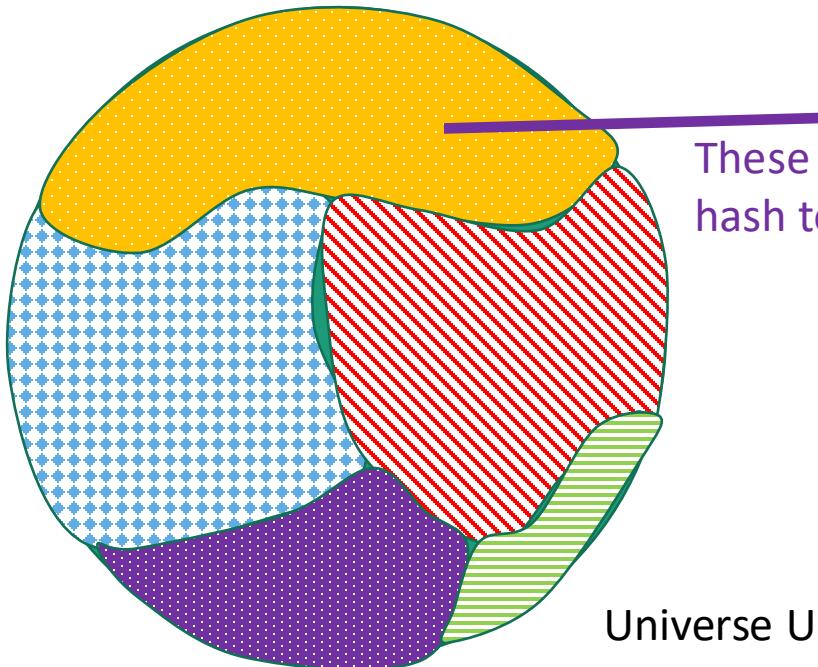
- Goal: Design a function $h: U \rightarrow \{1, \dots, n\}$ so that:
 - No matter what n items of U a bad guy chooses, the buckets will be balanced.
 - Here, balanced means $O(1)$ entries per bucket.
- If we had this*, then we'd achieve our dream of $O(1)$ **INSERT/DELETE/SEARCH**

So, does such a function exist?

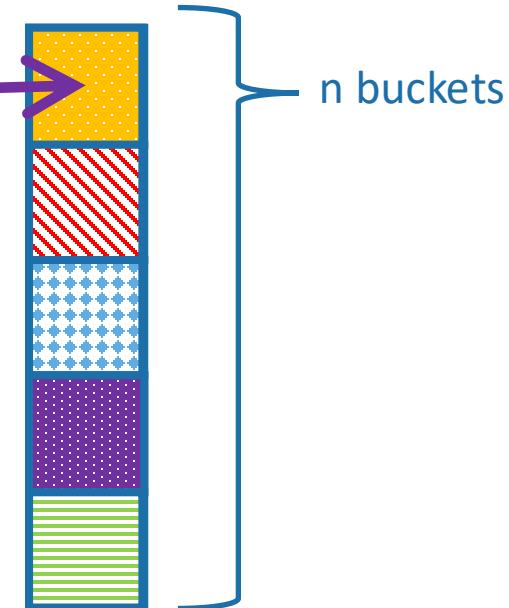
This is impossible!

We really can't beat the bad guy here.

- The universe U has M items
- They get hashed into n buckets
- At least one bucket has at least M/n items hashed to it.
- M is waayyyy bigger then n , so M/n is bigger than n .
- **Bad guy chooses n of the items that landed in this very full bucket.**



$h(x)$
These are all the things that hash to the first bucket.



Solution: Randomness

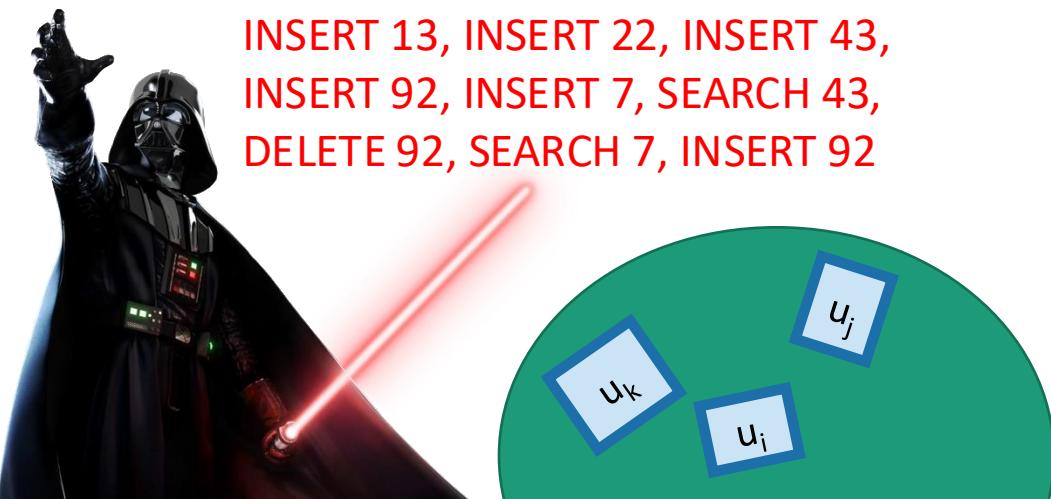
The game

What does
random mean
here? Uniformly
random?

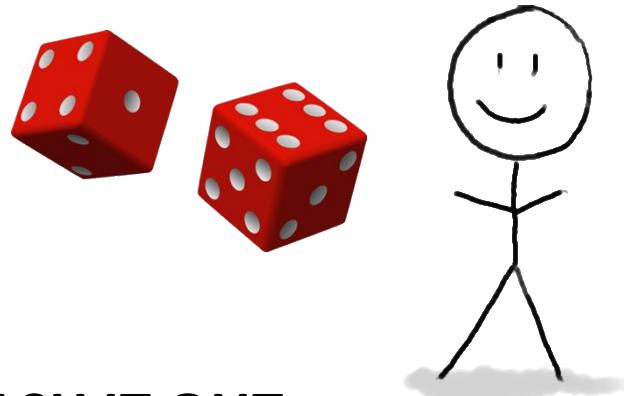
Plucky the pedantic penguin

1. An adversary chooses any n items $u_1, u_2, \dots, u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

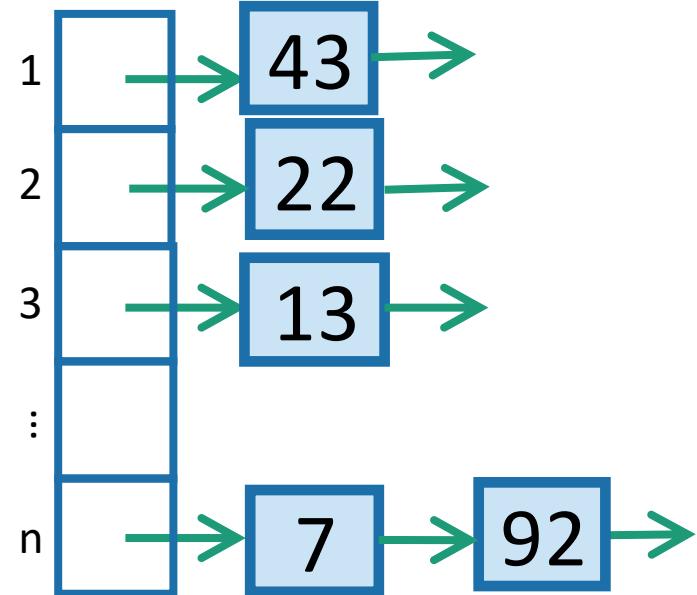
INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92



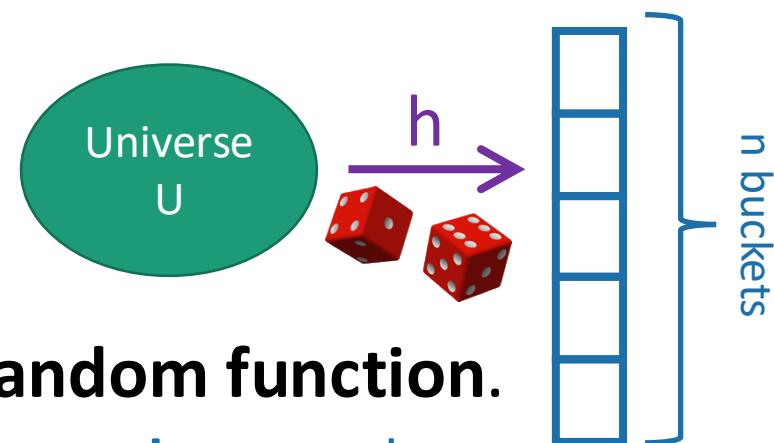
2. You, the algorithm, chooses a **random** hash function $h: U \rightarrow \{1, \dots, n\}$.



3. **HASH IT OUT** #hashpuns



Example of a random hash function



- $h: U \rightarrow \{1, \dots, n\}$ is a **uniformly random function**.
 - That means that $h(1)$ is a **uniformly random** number between 1 and n.
 - $h(2)$ is also a **uniformly random** number between 1 and n, independent of $h(1)$.
 - $h(3)$ is also a **uniformly random** number between 1 and n, independent of $h(1)$, $h(2)$.
 - ...
 - $h(M)$ is also a **uniformly random** number between 1 and n, independent of $h(1)$, $h(2)$, ..., $h(M-1)$.

Randomness can help!

Intuitively: The bad guy can't foil a hash function that they don't yet know.

Lucky the
Lackadaisical Lemur

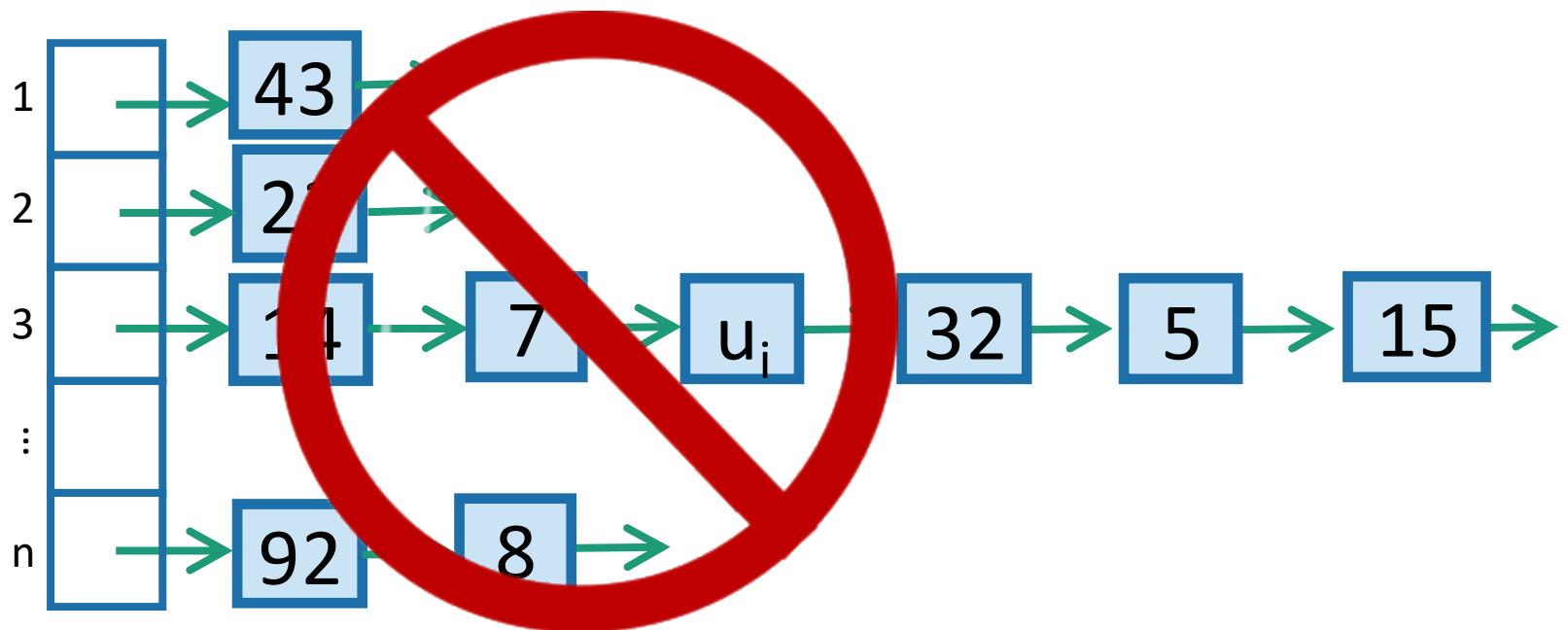
Plucky the Pedantic
Penguin

Why not? What if there's some strategy that foils a random function with high probability?

We'll need to do some analysis...

Intuitive goal

It's **bad** if lots of items land in u_i 's bucket.
So we want **not** that.



Formal goal

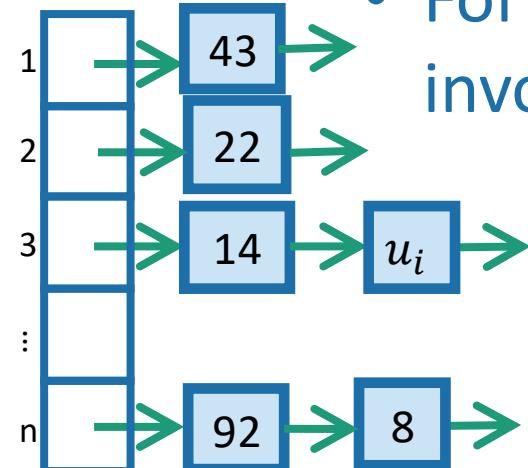
We could replace “2” here with any constant; it would still be good. But “2” will be convenient.

- Let h be a random hash function.
- Want: For all ways a bad guy could choose u_1, u_2, \dots, u_n to put into the hash table, and for all $i \in \{1, \dots, n\}$,
$$E[\text{ number of items in } u_i \text{'s bucket }] \leq 2.$$

- If that were the case*:

- For each INSERT/DELETE/SEARCH operation involving u_i ,

$$E[\text{ time of operation }] = O(1)$$



*Assuming $h(u)$ takes $O(1)$ time to compute

This is what we wanted at the beginning of lecture!

Goal:

- Come up with a distribution on hash functions so that:
- For all $i=1, \dots, n$,
 $E[\text{ number of items in } u_i\text{'s bucket }] \leq 2$.

Aside

- For all $i=1, \dots, n$,

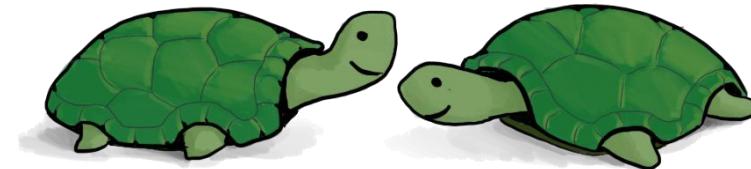
$$E[\text{ number of items in } u_i \text{ 's bucket }] \leq 2.$$

vs

- For all $i=1, \dots, n$:

$$E[\text{ number of items in bucket } i] \leq 2$$

Are these the same?



Think-Pair-Share Terrapins

No! (This was your pre-lecture exercise!)

Aside

- For all $i=1, \dots, n$,

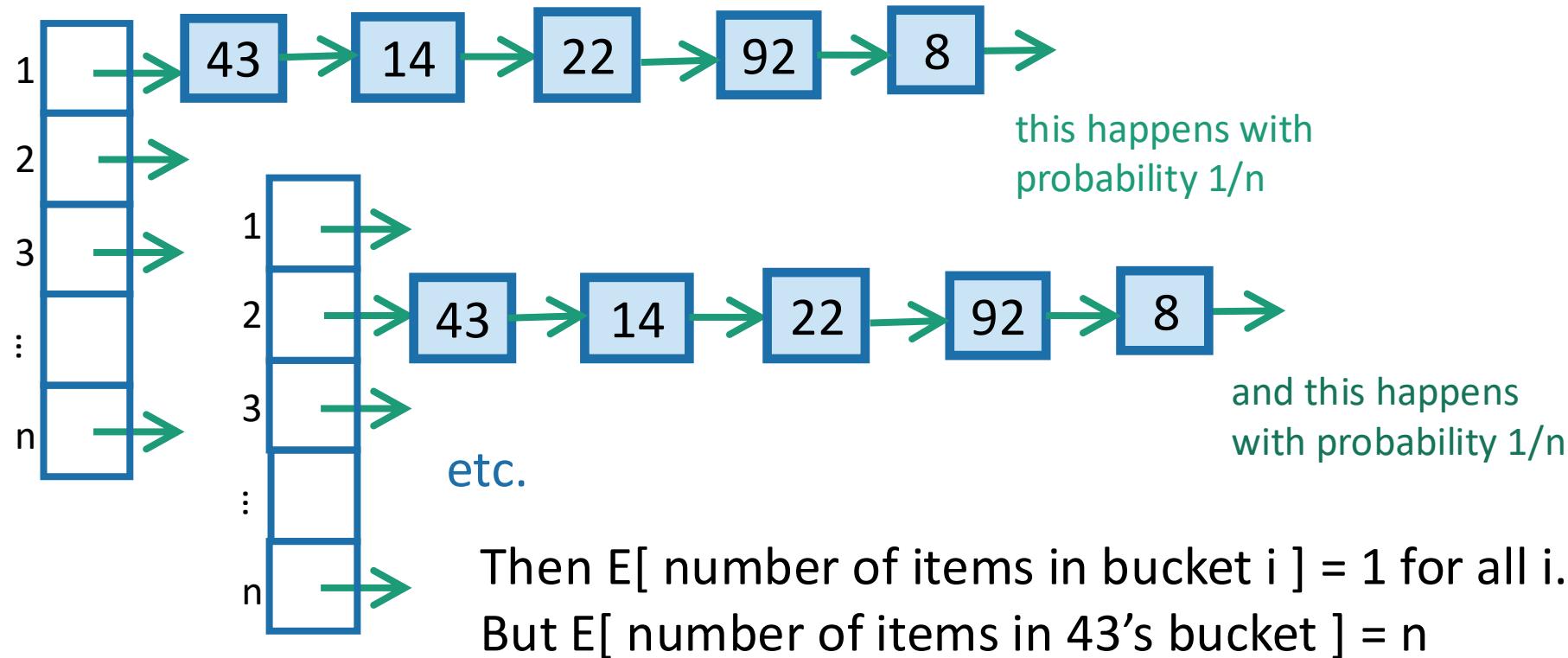
$$E[\text{ number of items in } u_i \text{ 's bucket }] \leq 2.$$

vs

- For all $i=1, \dots, n$:

$$E[\text{ number of items in bucket } i] \leq 2$$

Suppose that:



Goal:

- Come up with a distribution on hash functions so that:
- For all $i = 1, \dots, n$,
 $E[\text{ number of items in } u_i \text{'s bucket }] \leq 2$.

Claim:

- The goal is achieved by a uniformly random hash function.

Proof of Claim

- Let h be a uniformly random hash function.
- Then for all $i = 1, \dots, n$,
 $E[\text{ number of items in } u_i\text{'s bucket}] \leq 2$.

- $E[\frac{\text{\# items in}}{u_i\text{'s bucket}}] =$
 $= E\left[\sum_{j=1}^n \mathbf{1}\{h(u_i) = h(u_j)\}\right]$
- $= \sum_{j=1}^n P\{h(u_i) = h(u_j)\}$
- $= 1 + \sum_{j \neq i} P\{h(u_i) = h(u_j)\}$
- $= 1 + \sum_{j \neq i} 1/n$
- $= 1 + \frac{n-1}{n} \leq 2.$

Exercise: show this formally!
Intuitively, there are n possibilities
where u_j can land, and only one
of them is $h(u_i)$.

A uniformly random hash function leads to balanced buckets

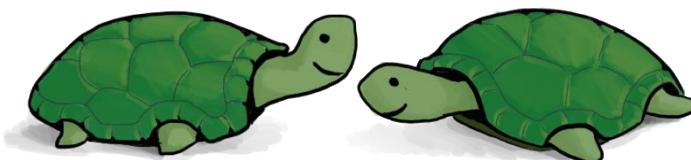
- We just showed:
 - For all ways a bad guy could choose u_1, u_2, \dots, u_n , to put into the hash table, and for all $i \in \{1, \dots, n\}$,
 $E[\text{ number of items in } u_i \text{ 's bucket }] \leq 2$.
- Which implies*:
 - No matter what sequence of operations and items the bad guy chooses,
 $E[\text{ time of INSERT/DELETE/SEARCH }] = O(1)$
- So our solution is:

Pick a uniformly random hash function?

*Assuming $h(u)$ takes $O(1)$ time to compute

What's wrong with this plan?

- Hint: How would you implement (and store) and uniformly random function $h: U \rightarrow \{1, \dots, n\}$?



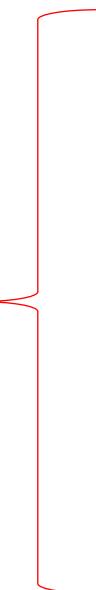
Think-Pair-Share Terrapins
1 minute think
1 minute pair and share

- If h is a uniformly random function:
 - That means that $h(1)$ is a **uniformly random** number between 1 and n .
 - $h(2)$ is also a **uniformly random** number between 1 and n , independent of $h(1)$.
 - $h(3)$ is also a **uniformly random** number between 1 and n , independent of $h(1)$, $h(2)$.
 - ...
 - $h(M)$ is also a **uniformly random** number between 1 and n , independent of $h(1)$, $h(2)$, ..., $h(M-1)$.

A uniformly random hash function is not a good idea.

- In order to store/evaluate a uniformly random hash function, we'd use a lookup table:

All of the M things in the universe

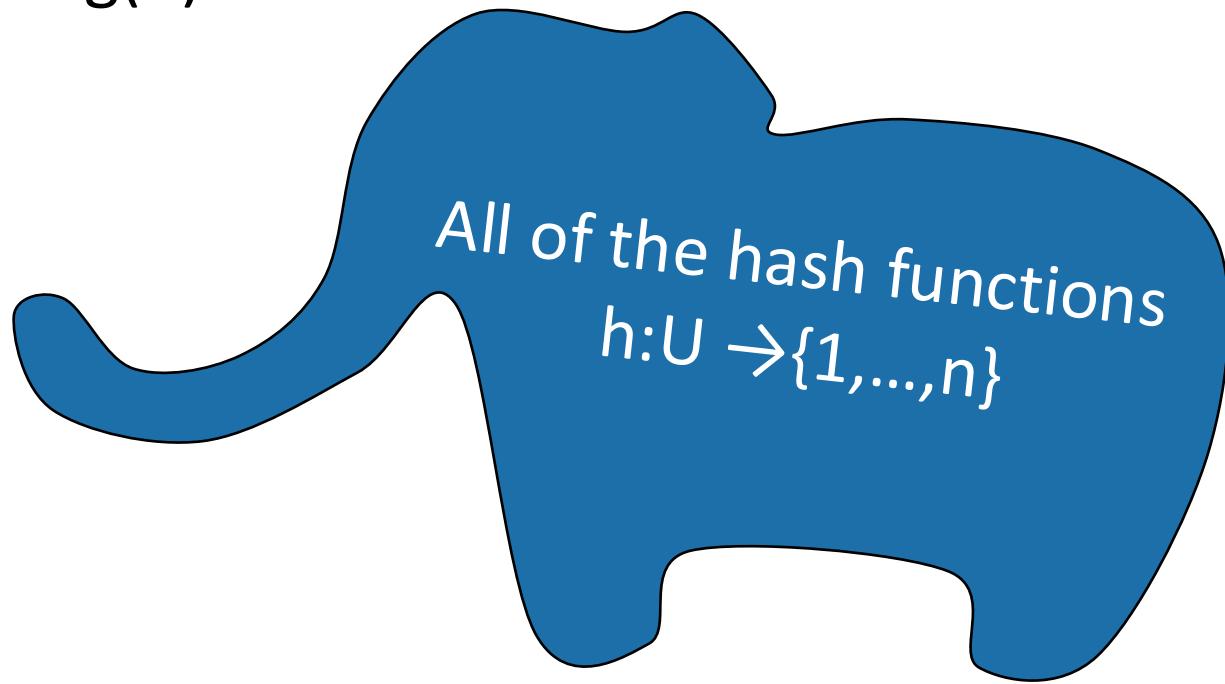


x	h(x)
AAAAAA	1
AAAAAB	5
AAAAAC	3
AAAAAD	3
...	
ZZZZY	7
ZZZZZ	3

- Each value of $h(x)$ takes $\log(n)$ bits to store.
- Storing M such values requires $M\log(n)$ bits.
- In contrast, direct addressing (initializing a bucket for every item in the universe) requires only M bits.

Another way to say this

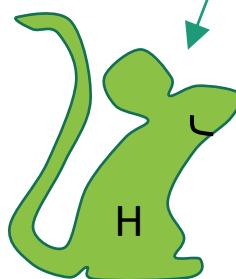
- There are lots of hash functions.
- There are n^M of them.
- Writing down a random one of them takes $\log(n^M)$ bits, which is $M \log(n)$.



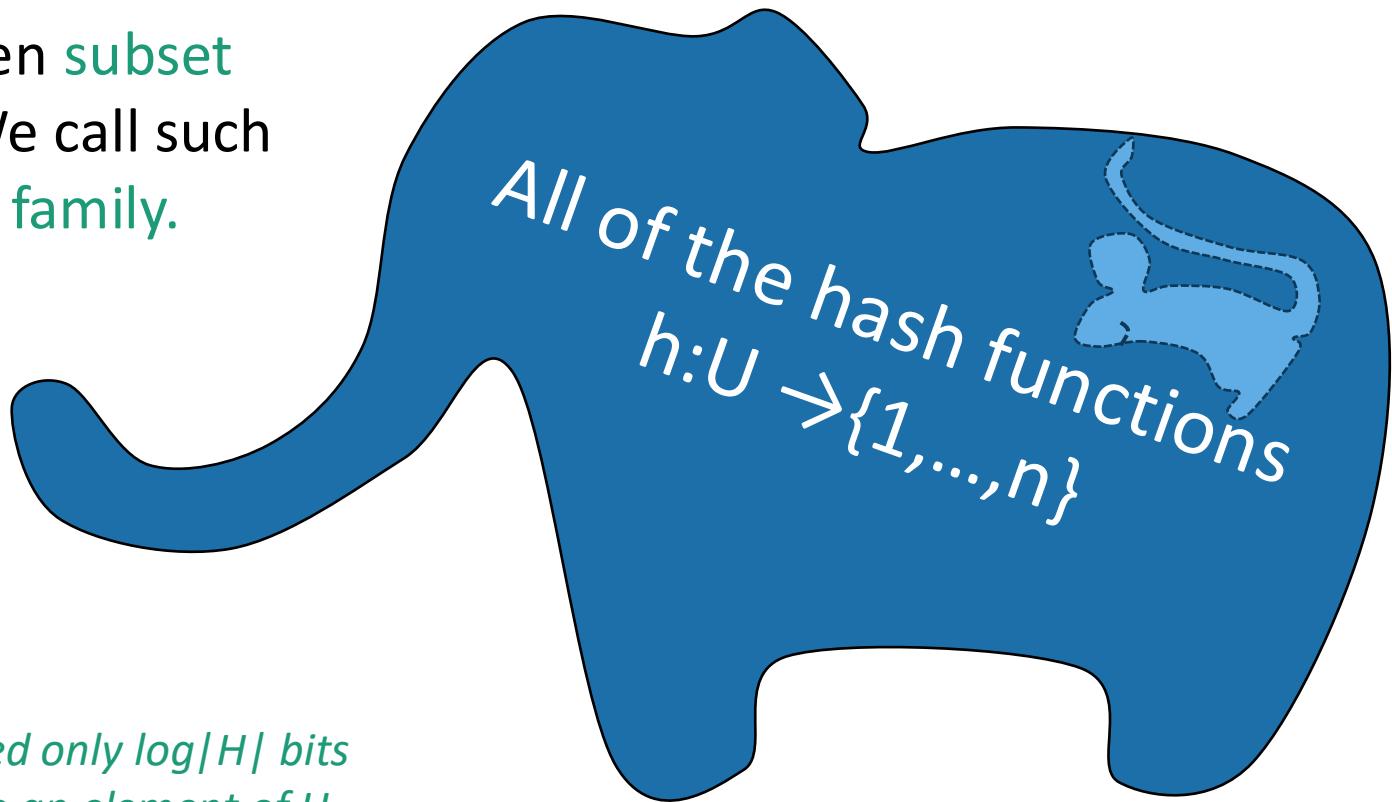
Solution

- Pick from a smaller set of functions.

A cleverly chosen **subset** of functions. We call such a subset a **hash family**.



We need only $\log |H|$ bits to store an element of H .

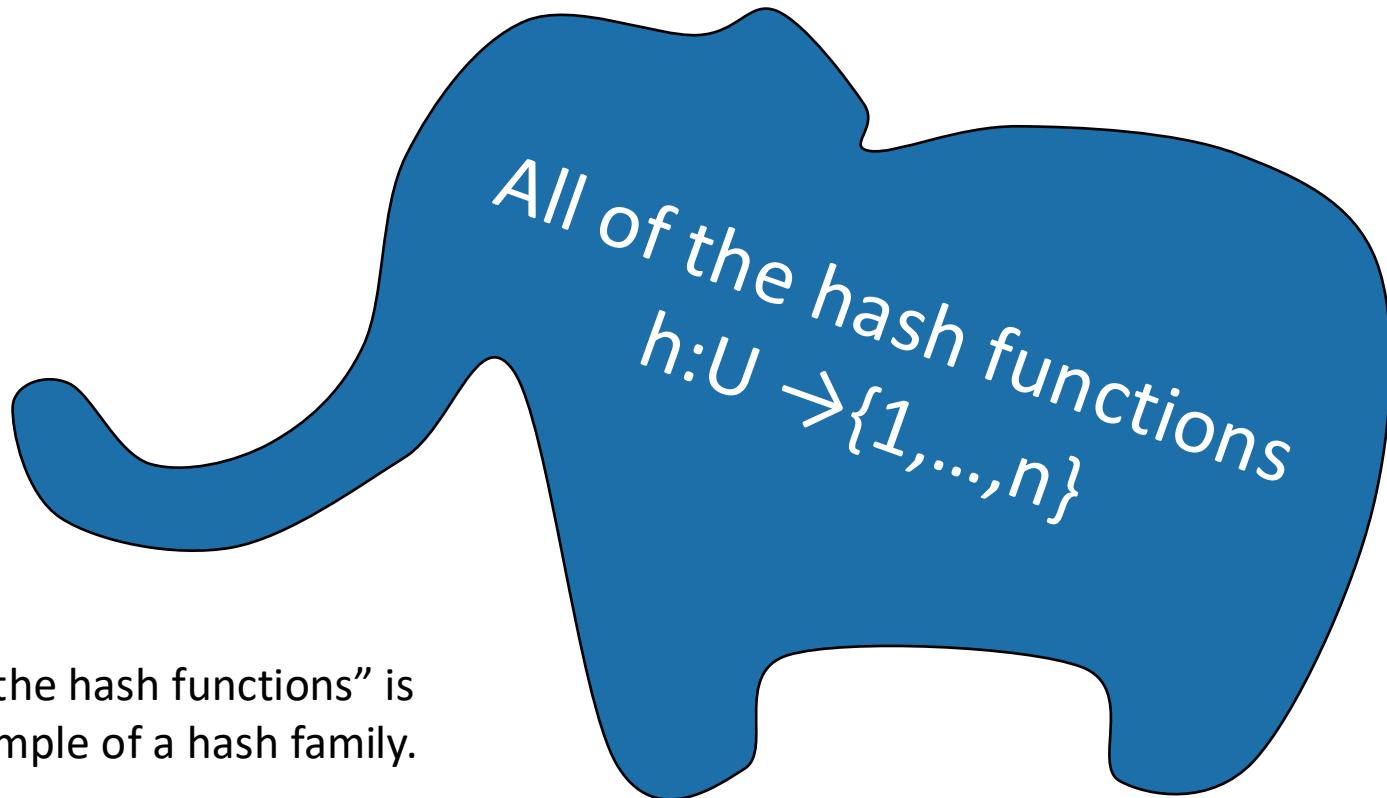


Outline

- **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- **Hash families** are the magic behind hash tables.
- **Universal hash families** are even more magic.

Hash families

- A hash family is a collection of hash functions.

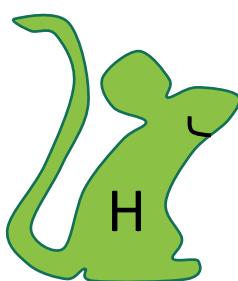
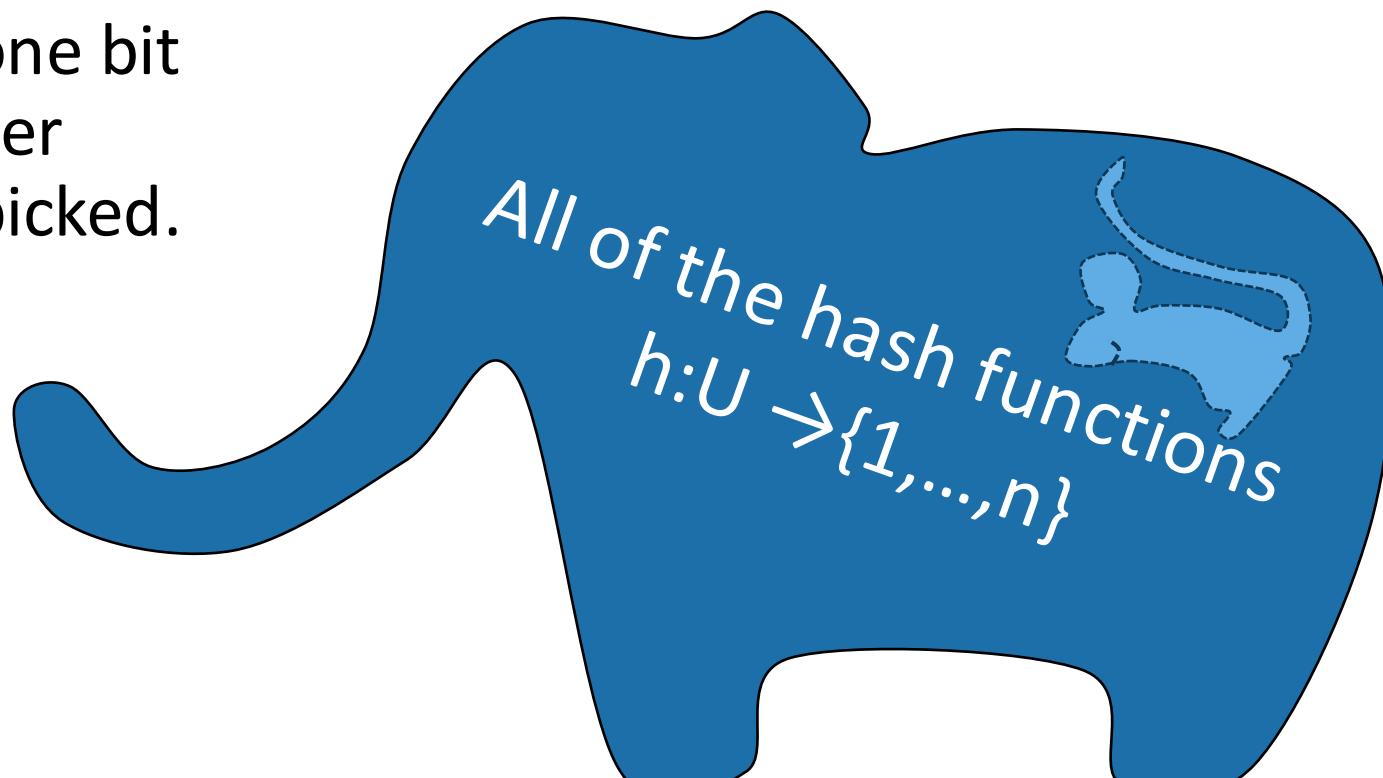


Example:

a smaller hash family

This is still a terrible idea!
Don't use this example!
For pedagogical purposes only!

- $H = \{$ function which returns the least sig. digit,
function which returns the most sig. digit $\}$
- Pick h in H at random.
- Store just one bit
to remember
which we picked.

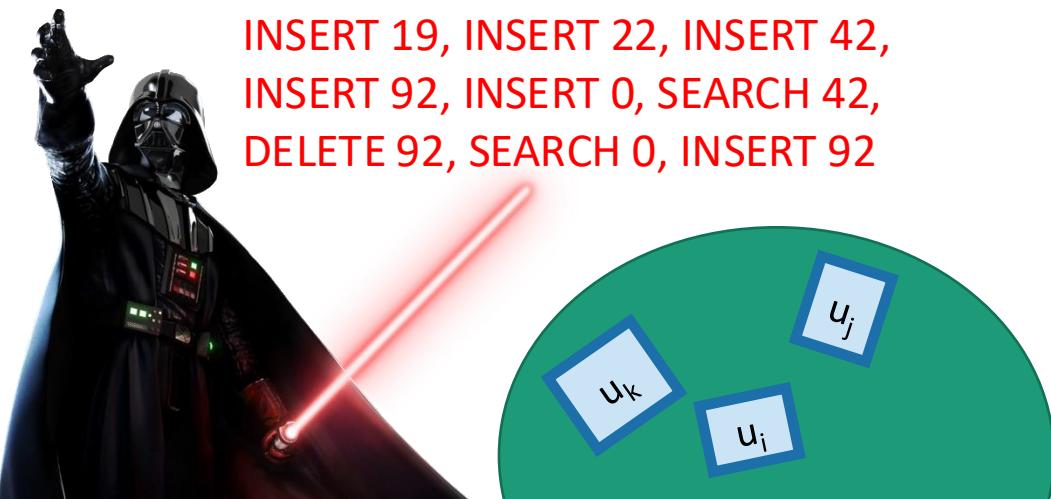


The game

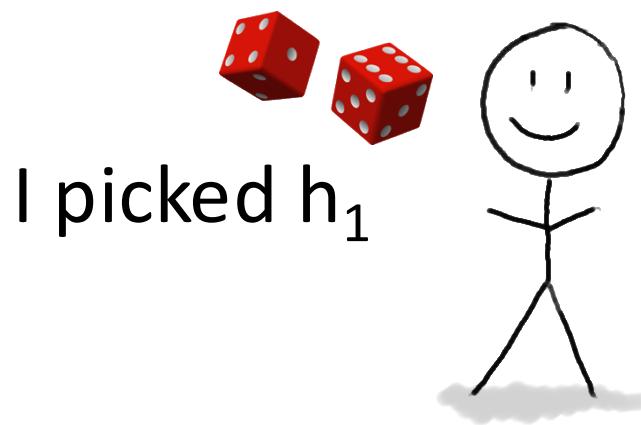
h_0 = Most_significant_digit
 h_1 = Least_significant_digit
 $H = \{h_0, h_1\}$

1. An adversary (who knows H) chooses any n items $u_1, u_2, \dots, u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

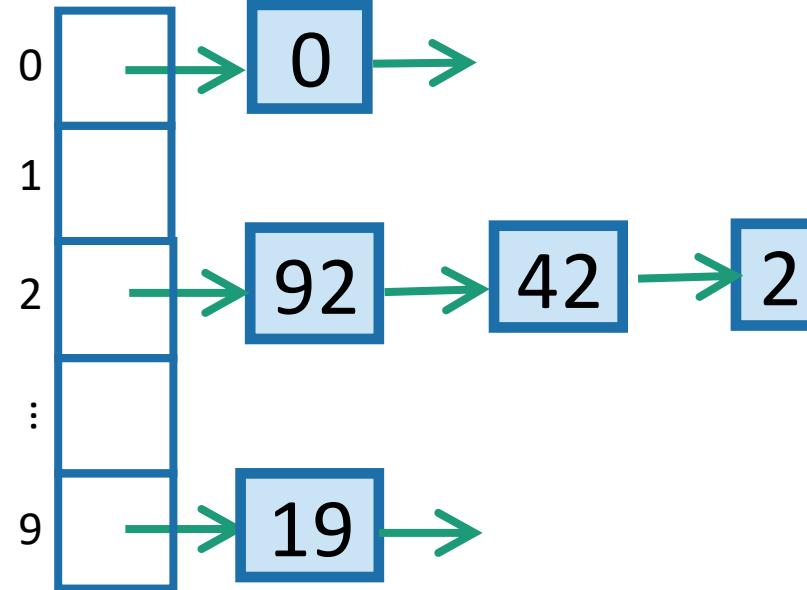
INSERT 19, INSERT 22, INSERT 42,
INSERT 92, INSERT 0, SEARCH 42,
DELETE 92, SEARCH 0, INSERT 92



2. You, the algorithm, chooses a **random** hash function $h: U \rightarrow \{0, \dots, 9\}$. Choose it randomly from H .



3. **HASH IT OUT** #hashpuns



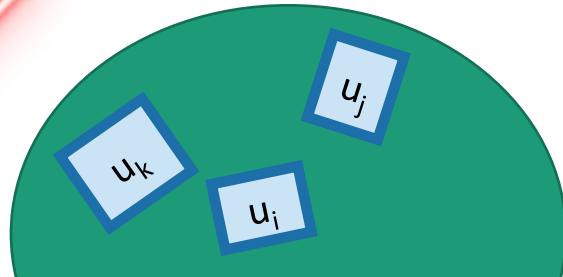
This is not a very good hash family

- $H = \{ \text{function which returns least sig. digit, function which returns most sig. digit} \}$
- On the previous slide, the adversary could have been a lot more adversarial...

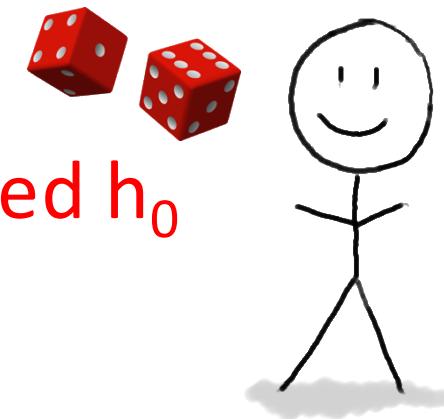
The game

h_0 = Most_significant_digit
 h_1 = Least_significant_digit
 $H = \{h_0, h_1\}$

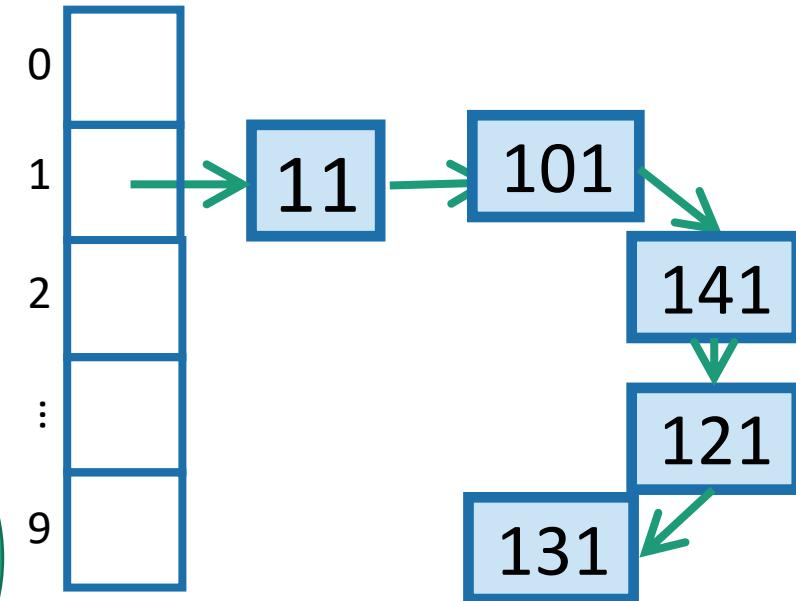
1. An adversary (who knows H) chooses any n items $u_1, u_2, \dots, u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.



2. You, the algorithm, chooses a **random** hash function $h: U \rightarrow \{0, \dots, 9\}$. Choose it randomly from H .



3. **HASH IT OUT** #hashpuns



Outline

- **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- **Hash families** are the magic behind hash tables.
- **Universal hash families** are even more magic.

How to pick the hash family?

- Definitely not like in that example.
- Let's go back to that computation from earlier....



Proof of Claim

- Let h be a uniformly random hash function.
- Then for all $i = 1, \dots, n$,
 $E[\text{ number of items in } u_i\text{'s bucket}] \leq 2$.

$$\begin{aligned}\bullet E[\begin{matrix} \text{\# items in} \\ u_i\text{'s bucket} \end{matrix}] &= \\ &= E\left[\sum_{j=1}^n \mathbf{1}\{h(u_i) = h(u_j)\}\right] \\ &= \sum_{j=1}^n P\{h(u_i) = h(u_j)\} \\ &= 1 + \sum_{j \neq i} P\{h(u_i) = h(u_j)\} \\ &= 1 + \sum_{j \neq i} 1/n \\ &= 1 + \frac{n-1}{n} \leq 2.\end{aligned}$$

All that we needed
was that this is $1/n$

Universal hash families

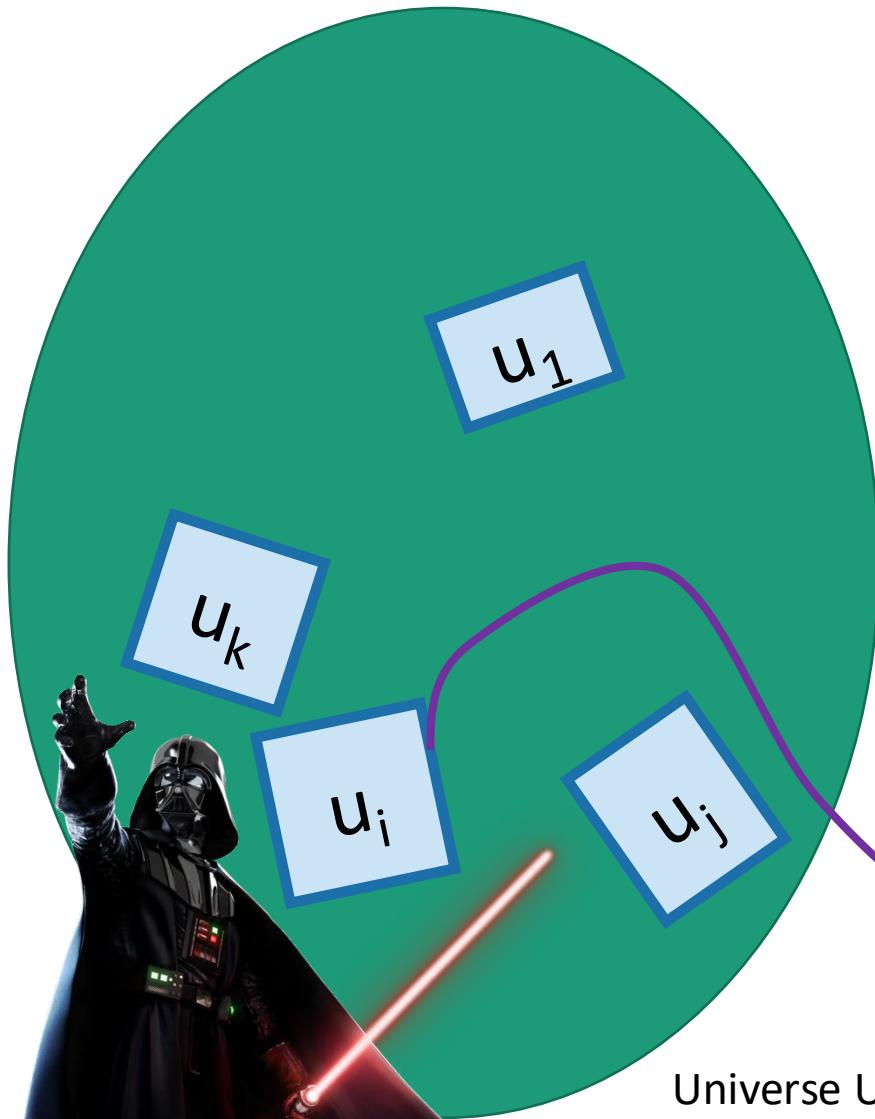
- H is a ***universal hash family*** if, when h is chosen uniformly at random from H ,

for all $u_i, u_j \in U$ with $u_i \neq u_j$,

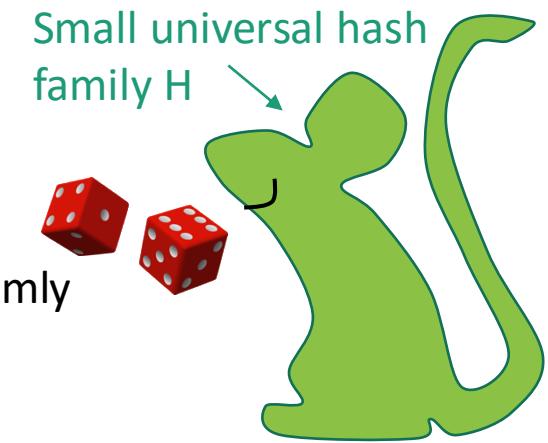
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- Earlier analysis shows: if we draw h uniformly at random from a universal hash family H , we will have **expected time* $O(1)$ INSERT/DELETE/SEARCH!**
- And if H is small, we can store a random $h \in H$ efficiently!

The whole scheme will be



Choose h randomly
from H



We can store h using
 $\log |H|$ bits.

Probably
these
buckets will
be pretty
balanced.

Universal hash families

- H is a ***universal hash family*** if, when h is chosen uniformly at random from H ,

for all $u_i, u_j \in U$ with $u_i \neq u_j$,

$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- **Universal hash family:** if you choose h randomly from H ,

$$\text{for all } u_i, u_j \in U \text{ with } u_i \neq u_j, \\ P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

Example

- $H = \text{the set of all functions } h: U \rightarrow \{1, \dots, n\}$
 - We saw this earlier – it corresponds to picking a uniformly random hash function.
 - Unfortunately this H is really really large.

- **Universal hash family:** if you choose h randomly from H ,

for all $u_i, u_j \in U$ with $u_i \neq u_j$,
 $P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$

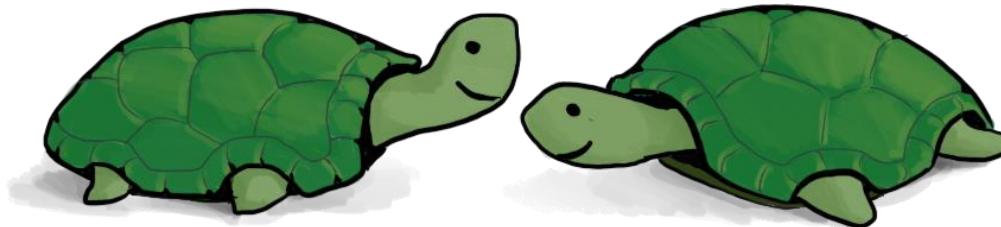
Non-example

- h_0 = Most_significant_digit
- h_1 = Least_significant_digit
- $H = \{h_0, h_1\}$

Prove that this choice of H is
NOT a universal hash family!

2 minutes think

1 minute pair and share



- **Universal hash family:** if you choose h randomly from H ,

Non-example

$$\text{for all } u_i, u_j \in U \text{ with } u_i \neq u_j, \\ P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- $h_0 = \text{Most_significant_digit}$
- $h_1 = \text{Least_significant_digit}$
- $H = \{h_0, h_1\}$

NOT a universal hash family:

$$P_{h \in H} \{ h(101) = h(111) \} = 1 > \frac{1}{10}$$

A small universal hash family??

- Here's one:
 - Pick a prime $p \geq M$. (And not much bigger than M)
 - Define

$$f_{a,b}(x) = ax + b \quad \text{mod } p$$

$$h_{a,b}(x) = f_{a,b}(x) \quad \text{mod } n$$

- Define:
$$H = \{ h_{a,b}(x) : a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\} \}$$

A small universal hash family??

- Here's one:
 - Pick a prime $p \geq M$. (And not much bigger than M)
 - Define

$$f_{a,b}(x) = ax + b \quad \text{mod } p$$

$$h_{a,b}(x) = f_{a,b}(x) \quad \text{mod } n$$

- Define:

$$H = \{ h_{a,b}(x) : a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\} \}$$

- Claims:

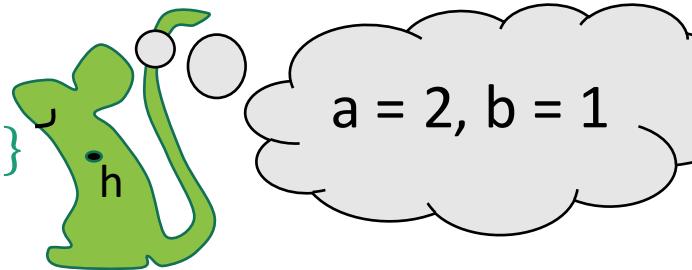
H is a universal hash family.

See CLRS (Thm 11.5) if you are curious, but you don't need to know why this is true for this class.

→ A random $h \in H$ takes $O(\log M)$ bits to store.

A random $h \in H$ takes $O(\log M)$ bits to store
(And more!)

$$H = \{ h_{a,b}(x) : a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\} \}$$
$$|H| = p \cdot (p-1) = O(M^2)$$



- Just need to store two numbers:
 - a is in $\{1, \dots, p-1\}$
 - b is in $\{0, \dots, p-1\}$
 - Store a and b with $2\log(p)$ bits
 - By our choice of p (close to M), that's $O(\log(M))$ bits.
- Also, given a and b , h is fast to evaluate!
 - It takes time $O(1)$ to compute $h(x)$.
- Compare: direct addressing was M bits!
 - Example: If $M = 128^{280}$, $\log(M) = 1960$.

A small universal hash family??

- Here's one:

- Pick a prime $p \geq M$. (And not much bigger than M)
- Define

$$f_{a,b}(x) = ax + b \quad \text{mod } p$$

$$h_{a,b}(x) = f_{a,b}(x) \quad \text{mod } n$$

- Define:

$$H = \{ h_{a,b}(x) : a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\} \}$$

- Claims:

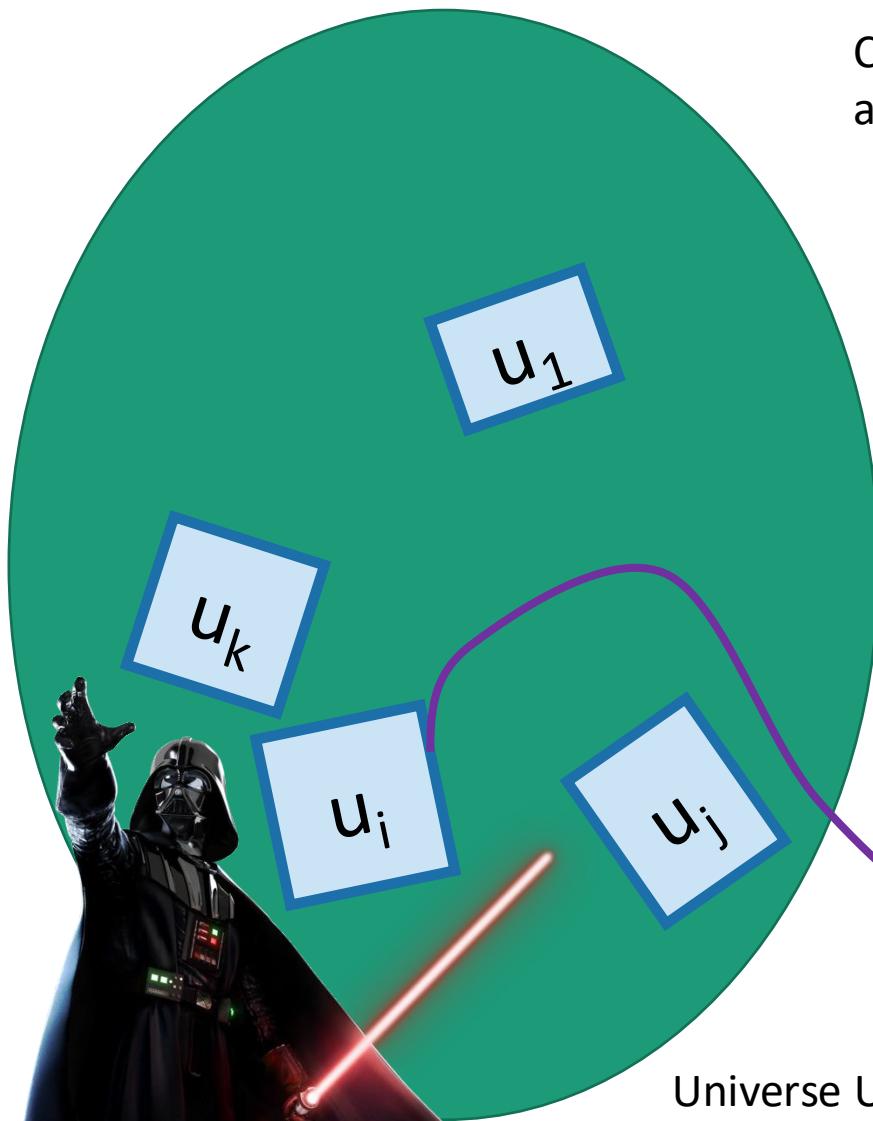
✓ H is a universal hash family.

✓ A random $h \in H$ takes $O(\log M)$ bits to store.

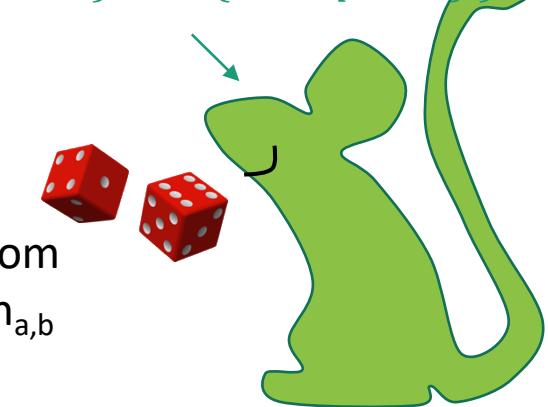
See CLRS (Thm 11.5) if you are
curious, but you don't need to know
why this is true for this class.

$$H = \{ h_{a,b}(x) : a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\} \}$$

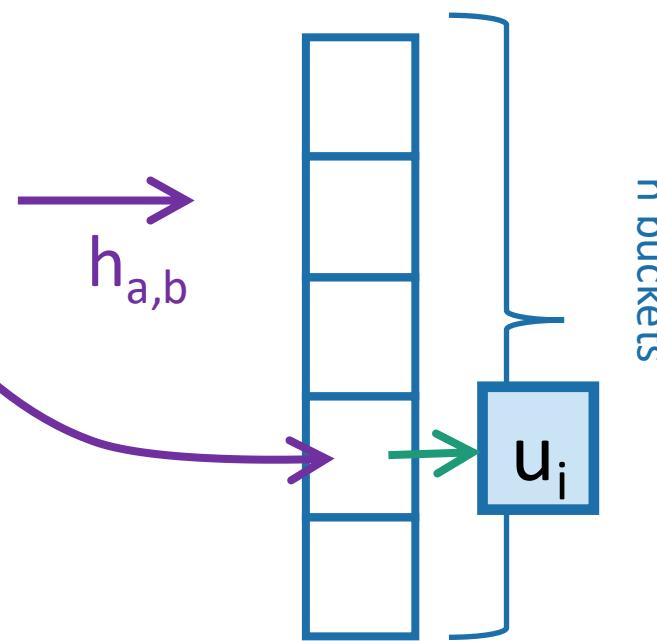
So the whole scheme will be



Choose a and b at random
and form the function $h_{a,b}$



We can store h in space
 $O(\log(M))$ since we just need
to store a and b .



Probably
these
buckets will
be pretty
balanced.

Outline

- **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- **Hash families** are the magic behind hash tables.
- **Universal hash families** are even more magic.

Recap

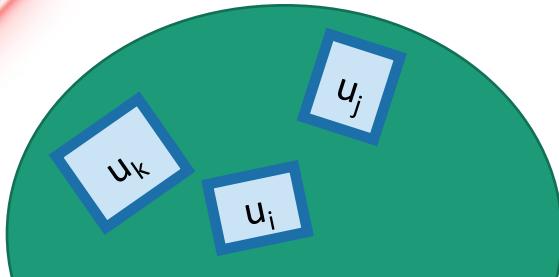
Want $O(1)$

INSERT/DELETE/SEARCH

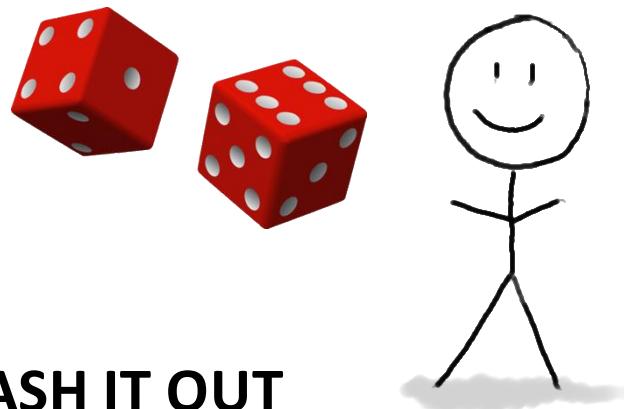
We studied this game

1. An adversary chooses any n items $u_1, u_2, \dots, u_n \in U$, and any sequence of L INSERT/DELETE/SEARCH operations on those items.

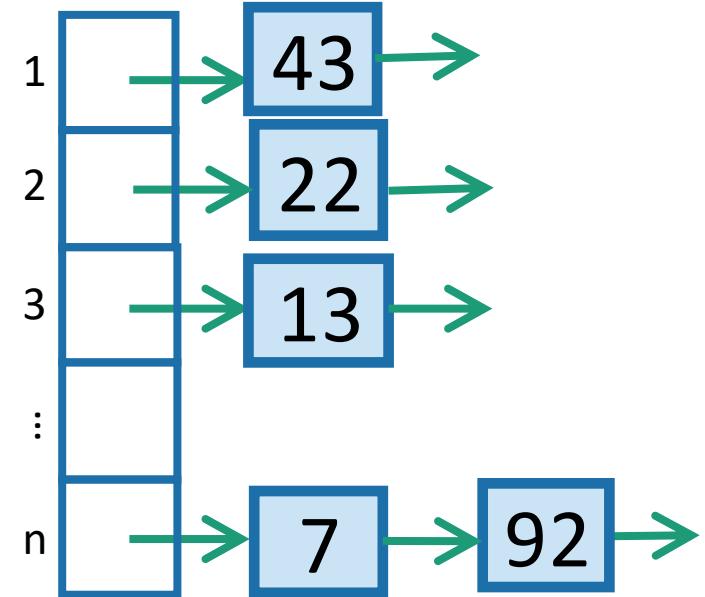
INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92



2. You, the algorithm, chooses a **random** hash function $h: U \rightarrow \{1, \dots, n\}$.



3. **HASH IT OUT**

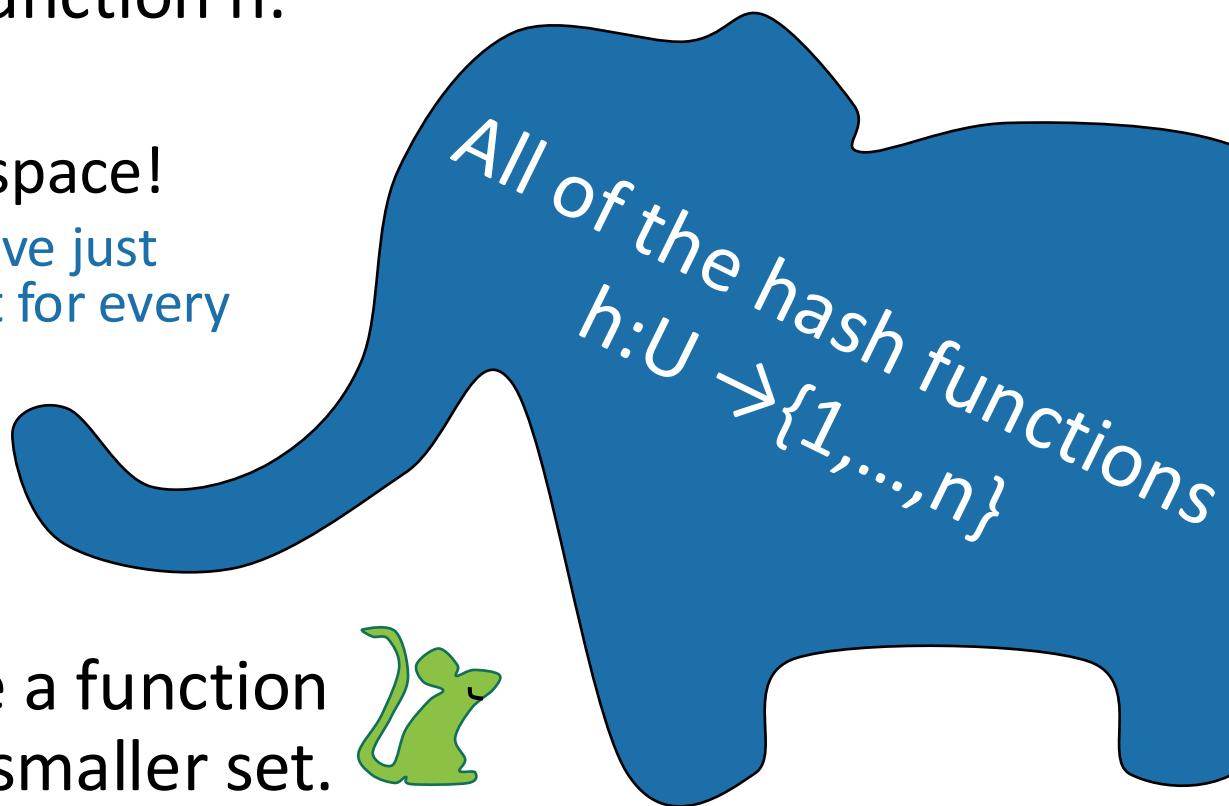


Uniformly random h was good

- If we choose h uniformly at random,
for all $u_i, u_j \in U$ with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$
- That was enough to ensure that all
INSERT/DELETE/SEARCH operations took $O(1)$
time in expectation, even on adversarial inputs.

Uniformly random h was bad

- If we actually want to implement this, we have to store the hash function h .
- That takes a lot of space!
 - We may as well have just initialized a bucket for every single item in U .
- Instead, we chose a function randomly from a smaller set.



Universal Hash Families

H is a universal hash family if:

- If we choose h uniformly at random in H ,
for all $u_i, u_j \in U$ with $u_i \neq u_j$,

$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

This was all we needed to make sure that the buckets were balanced in expectation!

- We gave an example of a really small universal hash family, of size $O(M^2)$
- That means we need only $O(\log M)$ bits to store it.

Hashing a universe of size M into n buckets, where at most n of the items in M ever show up.

Conclusion:

- We can build a hash table that supports **INSERT/DELETE/SEARCH** in $O(1)$ expected time
- Requires $O(n \log(M))$ bits of space.
 - $O(n)$ buckets
 - $O(n)$ items with $\log(M)$ bits per item
 - $O(\log(M))$ to store the hash function

That's it for data structures (for now)

Achievement unlocked

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!