Lecture 9

Graphs, BFS and DFS

More detailed schedule on the website!

Roadmap

Divide and
conquer

Dynamic
Programming

Greedy Algs

Longes

)
Max , horte st

A Min,

Future!

Outline

* Part 0: Graphs and terminology

* Part 1: Depth-first search
e Application: topological sorting
* Application: in-order traversal of BSTs

e Part 2: Breadth-first search

* Application: shortest paths
e Application (if time): is a graph bipartite?

Part O: Graphs

Graph of the internet
(circa 1999...it"s a lot
bigger now...)

Game of Thrones Character

G ra p h S Interaction Network

m;’rio

Rejtleshirt
Yoritte \
\

C)
0 Qhorin
Crastegy|

Roslin

Lothar
[P Missandei

Em £ Hoster

/ Walder, Aegon
,O* Jon Arryn (O D
I\A‘ra‘rtl’lll‘:gpl Ayn BarnstaD(o \.Kraznys
\l/ P
s st Rhaegar Worm
Rakharo

i

%

e tlyn XX
ST ~7 £
e S

R s
SN § /'Robert - 7z
N ywin J <

‘ o / / \ \
/ ‘A“\‘§"'\><\ Mace
‘ 5 S ,
B S\] "'.,‘.“no s Pycelle Borin
W Rickon— Eddardirignne.~_Sansaiime._ Sy
uwin | SRAA L IS } N
AN NN Y "
E S ’ S ALK A 1K/ y Ellaria
" Arya \/ \Cer: [N) I
@ 4 ,s /| Podrick, t-.\._~Oberyn
Cressen / Qyburn < N\ Ul 7 \ e
) ~loras__\ ' |/ KeveShae 0
\ e = 3 ‘ Chataya)
Salladhor ‘/ Amory
Shireen Anguy B ThOf'OIenn'ésandor
Gendry Lancel

Graphs |
. {709'(7, query, ...} p .

{meghan, auction, price, ...}
/ []

Theoretical Computer / .
. . g — -'*p/
Science a.c.ademlc) A Shap"a/ .
communities o2 .S & 2 77—}
e & Z RKlemberg A T
. — _N”h'hmorhca *

{approxim,; ...

Tt ’ Example from DBLP:

Communities within the co-authors of Christos H. Papadimitriou
7

G ra p h S jetblue flights

seattle
syracuse - Durlington
rochester boston
sacramento salt lake city ' nyc/jfk
oakland *=—] ,"l,“:imnwlgﬂ
san jose de/dulles
ontario ' e AN
long beach = J j A\
san diego H“Fhﬂf’”i“ new orleans _21endo ! wEﬂI Fd‘“ ha;:u:-h
"“"“-«R% & lampa If | nassau ' {
T fort myers e NT
T fnrt lauderdale \
= --l----l | II
santiago ! ./
santo domingo l l
:l:ﬂn:lqu:l.lﬁl:

aguadilla ~ san jigan

___fuertorico |

Graphs

dpkg

(>=1.23)

(>=1.32)

coreutils

tar

libbz2-1.0

(==1.32)

(>=1.15.4)

(>=2.2.51-5)

debian dependency (sub)graph

libselinuxl

timeout

(>=1:2.4.46-

5)

[dpkg]

(>=2.4.46-3)

install-info

libacll

libattrl

> multiarch-support

libacll-kerberos4kth

xz-utils

(>=5.1.1alpha+20110809)

£

liblzma5s

G ra p | | S The bilateral flows between 196 countries are estimated from sequen-

tial stock tables (see overleaf for details). They are com-
parable across countries and capture the number AC2
of people who changed their country of P‘(\e‘
residence between mid-2005 and AN
mid-2010. 2

The circular plot shows the estimates of directional flows between the
50 countries that send and/or receive at least 0.5% of the

world's migrants in 2005-10. Tick marks indicate

gross migration (in + out) in 100,000'.

North Ame’i(‘a

United States

%

e

o
o
3 e
g, Netherands 5
B ! Switzerlnd M
2 l'
s

S E |
4 0| Spain
ongreng ! 3B , i

Immigration
flows

5 4 ..7777777
0{44 (%? ,Q N..u e — %
Ay - — - - 2 Z
’6 g T E E g % aﬁ F‘;\‘b
£ £ 38 8 X
5 3 % We® 10

Graphs

CHL

®
PER \.

World trade in fresh potatoes, flows over 0.1 m US$ average 2005-2009

ROU 47

ARG URY

FLI

Potato trade

11

Graphs -

Soybeans

Water

Graphical models

13

Graphs

What eats what in
the Atlantic ocean?

A smpiitead 1000 web f0¢ the Noahwes: Alaatic. © IMMA

-core
9.
8.
6.
5.
4.
3.
1.
0.

k
15

1ons

N

Neural connect
the bra

In

Graphs

* There are a lot of graphs.

 We want to answer questions about them.
* Efficient routing?
 Community detection/clustering?

* From pre-lecture exercise:
 Computing Bacon numbers
* Signing up for classes without violating pre-req constraints

* How to distribute fish in tanks so that none of them will fight.

e This is what we’ll do for the next several lectures.

16

Undirected Graphs 2

An undirected graph G has: 0

e A setV of vertices

e Aset E of edges e
* Formally, G = (V,E)
* The degree of vertex is the number of G = (V,E)
edges coming out. a ’
* The connected vertices are called
neighbors.
* Example * The degree of vertex 4 is 2.

e V={1,2,3,4} * There are 2 edges coming out.
e E={{1,3} {2,4}, {3,4}, {2,3}} * Vertex 4’s neighbors are 2 and 3

17

Directed Graphs

A directed graph G has:
* AsetV of vertices
* A set E of DIRECTED edges
* Formally, G = (V,E)

The in-degree of vertex is the number of

edges coming in.

The out-degree of vertex is the number of

edges going out.
Example
e V={1,2,3,4}
* £E={(1,3),(2,4), (3,4),(4,3),(3,2) }

The in-degree of vertex 4 is 2.

The out-degree of vertex 4 is 1.
Vertex 4’s incoming neighbors are 2,3
Vertex 4’s outgoing neighbor is 3.

18

How do we represent graphs?
e Option 1: adjacency matrix

1

0

v ¢t ¢ 1

How do we represent graphs?

e Option 1: adjacency matrix

v ¢t ¢ 1

O RO = -
—_ O O
—_ O W

How do we represent graphs?

e Option 1: adjacency matrix

Destination
1 2 3
Jo o (D

€
O = O
—_ O O

How do we represent graphs?

e Option 2: adjacency lists.

1 2 3

H

‘1 |

4’s neighbors are How would you

2 and 3 modify this for
directed graphs? ,,

In either case

e Vertices can store other information
e Attributes (name, IP address, ...)

* helper info for algorithms that we will perform on the
graph

* Basic operations:
* Edge Membership: Is edge ein E?
* Neighbor Query: What are the neighbors of vertex v?

23

Trade-offs

Say there are n vertices
and m edges.

==}

0 1 0]
0 1 1
1 0 1
1 1 0]

Generally better for sparse
graphs (where m « n?)

1 2 3 4

R
!

Edge membership
Ise={v,w}inE?

O(1)

® ® ¢ i
2

O(deg(v)) or

O(deg(w))

Neighbor query

Give me Vv’s neighbors.

O(n)

O(deg(v))

Space requirements

O(n?)

See Lecture 9 IPython notebook for an actual

implementation!

O(n + m)

We'll assume this
representation 2fzpr
the rest of the class

Part 1: Depth-first search

labyrinth

How do we explore a/gx:ap‘h/.f

At each node, you can get a list of neighbors,
and choose to go there if you want.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

Q Been there, haven’t
explored all the
paths out.

’ Been there, have
explored all the
paths out.

27

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

28

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

29

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

. Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

30

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

31

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

32

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

33

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

34

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

35

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

36

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

37

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

. Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

38

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

39

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

40

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

. Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

41

Depth First Search

Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

Depth First Search

Exploring a labyrinth with pseudocode

* Each vertex keeps track of whether it is:
* Unvisited ()

* In progress () @
* Alldone @

* Each vertex will also keep track of:
* The time we . Tl

e The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go

through. This way has more bookkeeping — the bookkeeping will be useful later!
43

Depth First Search

currentTime = 0 * DFS(w, currentTime):
* w.startTime = currentTime
e currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)

* currentTime ++
e w.finishTime = currentTime
O unvisited Mark w as all done

O in progress * return currentTime

.all done "

Depth First Search

currentTime = 1 * DFS(w, currentTime):
* w.startTime = currentTime
e currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)

* currentTime ++
e w.finishTime = currentTime
O unvisited Mark w as all done

O in progress * return currentTime

.all done e

Depth First Search

currentTime = 1 * DFS(w, currentTime):
* w.startTime = currentTime
e currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis

Start:0 _
e currentTime

W = DFS(v, currentTime)
* currentTime ++
e w.finishTime = currentTime
@ unvisited Mark w as all done

O in progress * return currentTime

.all done 16

Depth First Search

currentTime = 2 * DFS(w, currentTime):
* w.startTime = currentTime
° * currentTime ++
 Mark w as in progress

° e for v in w.neighbors:

e ifvis
Start:0

* currentTime
W = DFS(v, currentTime)
Start: 1 * currentTime ++
B * w.finishTime = currentTime
O unvisited Mark w as all done
O in progress * return currentTime

.all done 47

Depth First Search

currentTime = 20 * DFS(w, currentTime):
* w.startTime = currentTime
° * currentTime ++
 Mark w as in progress
° * for vin w.neighbors:
Start:0 s ifvis :
* currentTime
= DFS(v, currentTime)
Start: 1 * currentTime ++
N e w.finishTime = currentTime
O unvisited Mark w as all done
O in progress * return currentTime

Takes until
currentTime = 20 . all done 48

Depth First Search

currentTime = 21 * DFS(w, currentTime):
* w.startTime = currentTime
a * currentTime ++
 Mark w as in progress
° * for vin w.neighbors:
Start:0 s ifvis :
* currentTime
= DFS(v, currentTime)
Start: 1 * currentTime ++
N e w.finishTime = currentTime
O unvisited Mark w as all done
O in progress e return currentTime

.aII done 29

Takes until
currentTime = 20

Depth First Search

currentTime =21

Start:0

Start: 1
End: 21

O unvisited
O in progress
. all done

Takes until
currentTime = 20

* DFS(w, currentTime):

* w.startTime = currentTime
* currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime

= DFS(v, currentTime)

* currentTime ++

e w.finishTime = currentTime

Mark w as all done
 return currentTime

50

Depth First Search

currentTime = 22

Start:0

Start: 1
End: 21

O unvisited
O in progress
. all done

Takes until
currentTime = 20

* DFS(w, currentTime):

* w.startTime = currentTime
* currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime

= DFS(v, currentTime)

* currentTime ++

e w.finishTime = currentTime

Mark w as all done
 return currentTime

51

This is not the only way to write DFS!

* See the textbook for an iterative version.
* (And/or figure out how to do it yourself!)

DFS finds all the nodes reachable
from the starting point

In an undirected graph, this is

“~ called a connected component.

One application of DFS: finding

connected components. -,

To explore the whole graph

* Do it repeatedly!

Why is it called depth-first?

* We are implicitly building a tree: e \

YOINK! % O ?ig

. Q
e Call this the #
@ “DFS tree” O

C

* First, we go as deep as we can. @ @

Running time

* We look at each edge at most twice.
* Once from each of its endpoints

 We visit each vertex at most once
* And basically we don’t do anything else.
* So...

O(m+n)

56

Running time
* Assume we are using the linked-list format for
G=(V,E).

* We visit each vertex in G exactly once.
* Here, “visit” means “call DFS on”

* At each vertex w, we:
* Do some book-keeping: O(1)
* Loop over w’s neighbors and check if they are visited

(and then potentially make a recursive call): O(1) per
neighbor or O(deg(w)) total.

e Total time:

* Y vey(0(deg(w)) + 0(1))
. = O(|E| +IV]) = 0(n + m)

57

You check:

DFS works fine on directed graphs too!

e o
/\
A

Only walk to C, not to B.

Siggi the studious stork
59

Pre-lecture exercise

* How can you sign up for classes so that you never
violate the pre-req requirements?

* More practically, how can you install packages
without violating dependency requirements?

Application of DFS: topological sorting

* Find an ordering of vertices so that all of the
dependency requirements are met.

* Aka, if vcomes before w in the ordering, there is not an
edge from w to v.

multiarch-
support

_libselinux1
@ Suppose the dependency graph has no cycles:

it is a Directed Acyclic Graph (DAG) 61

Can’t always eyeball it.

exf-tools-wsdlto
org.apache.cxf
2.4.0-SNAPSHOT

cxf-java2ws-plugin
org.apache.cxf
2.4.0-SNAPSHOT

cxfrt cxf-parent
org.apache cxf org.apache.cxf
2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT

cxf-archetypes
org.apache cxf
2.4.0-SNAPSHOT

exf-common

cxf-rt-bindings
org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

exf-tools
org.

cxf-maven-plugins

2.4.0-SNAPSHOT

apache.cxf

cxf-jaxws-javafirst
arg.apache.cxfarchetype
2.4.0-SNAPSHOT

cxfintegration
org.apache.cxf
2.4.0-SNAPSHOT

exf
arg.apache.cxf
2.4.0-SNAPSHOT

cxf-tools-javato
org.apache.cxf
2.4.0-SNAPSHOT

cxf-tools-wsdlto-frontend-javascript
org.apache.c:
2.4.0-SNAPSHOT

cxf-tools-wsdlto-test
org.apache.cxf
2.4.0-SNAPSHOT

cxf-tools-java2ws
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-javascript
org.apache.cxf
2.4.0-SNAPSHOT

cxf-codegen-plugin
org.apache.cxf
2.4.0-SNAPSHOT

of-tool

o1t

org.apache. cxf
2.4.0-SNAPSHOT

extrt
org.apache.cxf
2.4.0-SNAPSHOT

cx-tools- wsdlto-databinding-jaxh
org.apache.cxf
2.4.0-SNAPSHOT

cxf-tools-wsdlto-frontend-jaxws
org.apache,cxf
2.4.0-5NAPSHOT

\

]
org.apache.cxf

2.4 0-SNAPSHOT

exf-rt-testsupport
org apache cxf
2.4.0-SNAPSHOT

cxf-tools-wsdlto-core
org.apache.cxf

.apache.cxf

m exf-wsdlvalidatorplugin

org
2.4.0-SNAPSHOT 2.4.0-SNAPSHOT

cxf-tools-validator
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-transports-jms
org.apache.cxf
2.4.0-5NAPSHOT

cxf-tools-common

org.apache.cxf

2.4.0-SNAPSHOT

exfrt-frontend-js
org.apache.cxf
2.4.0-SNAPSHOT

cxf-corbatool

aven-plug
org.apache.cxf
2.4.0-SNAPSHOT

exf-tools-corba
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-management-web
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-frontend-jaxrs
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-ws-security
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-bindings-http
org.apache. cxf
2.4.0-SNAPSHOT

cxf-integration-jca
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-databinding-sdo
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-bindings-object
org.apache cxf
2.4.0-SNAPSHOT

cxf-rt-bindings-corba
org.apache.cxf
2.4.0-SNAPSHOT

=

ey htt,

et

htt;

org.apache.cxf
2.4.0-SNAPSHOT

P
org.apache.cxf

2.4.0-SNAPSHOT

exf-rt-frontend-jaxws
org apache cxf
2.4.0-SNAPSHOT

exfrt-transports-http

.apache.cxf

exfrt-frontend-sim ple

.apache.cxf

———

ol
2.4.0-SNAPSHOT

o
2.4.0-SNAPSHOT

exf-rt-bindings-xml|
org.apache.cxf
2.4.0-SNAPSHOT

ext-rt-bindings-coloc
org.apache.cxf
2.4.0-SNAPSHOT

«*

exf-wst
org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

& h +

cxf-api
org.apache.cxf
2.4.0-SNAPSHOT

utilities

org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

Apache CXF

cxf-rt-bindings-soap
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-ws-rm
org.apache.cxf
2.4.0-5NAPSHOT

cxf-rt-ws-policy
org.apache.cxf
2.4.0-SNAPSHOT

cxf-integration-jbi
org.apache.cxf
2.4.0-SNAPSHOT

ext-rt-bindings-jbi
corg.apache. cxf
2.4.0-SNAPSHOT

exf-rt-ws-addr
org.apache.cxf
2.4.0-SNAPSHOT
cxf-rt-transports-local
org.apache.cxf
2.4.0-SNAPSHOT
cxf-re-databinding-jaxb ext-rt:

org.apache.cxf
2.4.0-SNAPSHOT

=
org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

cxftestutils
org.apache.cxf
2.4.0-SNAPSHOT

62

What do you notice about the

I_Et ,S d O D FS finish times? Any ideas for how

we should do topological sort?
1 minute think
1 minute pair+share

@ -

start:9

finish:lO

start:/
finish:8 multiarch
-support
0 e start:3
finish:4
A
dpkg) start:0
finish:11
start:2
start:1 finish:5

finish:6

63

Suppose the underlying
graph has no cycles

Finish times seem useful

Claim: In general, we’ll always have:

(2 ——(e>

finish: [larger] finish: [smaller]

To understand why, let’s go back to that DFS tree.

64

(check this
statement

A more general statement Loy

(this holds even if there are cycles)

 Ifvisadescendant of win this tree: '?5\

w.start wv.start v.finish w.finish

timeline I I I I
W |
* |fwisadescendant of vin this tree: Q QW
v.start w.start w.finish v.finish Q
| | | | Poofs

* If neither are descendants of each other: ; G

v.start v.finish w.start w.finish

—L 1L O

(or the other way around)

(A8
Then B.finishTime < A.finishTime

Proof of this —
Suppose the underlying
graph has no cycles o My
e Case 1: Bis a descendant of A in the <X§
DFS tree. |
A.finishTime Q

* Then
B.startTime
A.startTime I B.finishTime I
* aka, B.finishTime < A finishTime. : qii

If A B
Proof of this — W

Then B.finishTime < A.finishTime

Suppose the underlying

. graph h.as no cycles o M \
e Case 2: Bis a NOT descendant of A in the

DFS tree.

* Notice that A can’t be a descendant of B in the DFS
tree or else there’d be a cycle; so it looks like this ——

* Then we must have explored B before A. *

I L
N .

e Otherwise we would have gotten to B from A, and B . . ;
would have been a descendant of A in the DFS tree. = Q % -
* Then Y AT
B.finishTime A finishTime ; O O
B.startTime A.startTime D SR
| I | I : I
IR0

e aka, B.finishTime < A.finishTime. =

Theorem

* If we run DFS on a directed acyclic graph,

)

Then B.finishTime < A.finishTime

68

Back to "(A>(B)

. . Then B.finishTime < A.finishTime
topological sorting

* In what order should | install packages?

* In reverse order of finishing time in DFS!
* Then, the theorem says we’ll never have a “backward” edge

tart:g start:3
start:
finish:4
 coreutils_ finish:10 0
start:7 multiarch-
finish:8 support

C_tar D
start:0

start:1 finish:11 finish:5

finish:6 _libselinuxl >
i)

Check out iPython

Topological Sorting (on a DAG) retesekioran

* Do DFS

* When you mark a vertex as all done,
put it at the beginning of the list.

start:9

coreutils finish:10
start:7/
finish:8

implementation!

dpkg

coreutils

tar

libbz?2
libselinuxl
multiarch support

start:3
finish:4

multiarch-

support

dpkg) start:0 start:2
start:1 finish:11 finish:5
finish:6 _libselinux1 >

70

What have we learned?

* DFS can help you solve the topological sorting
problem

* That’s the fancy name for the problem of finding an
ordering that respects all the dependencies

* Thinking about the DFS tree is helpful.

72

This example skipped in
Exa M p ‘ e: class — here for reference.

Start:0

73

This example skipped in
Exa M p ‘ e class — here for reference.

Start:0

74

This example skipped in
Exa M p ‘ e class — here for reference.

Start:0

Start:2 .

This example skipped in
Exa M p ‘ e class — here for reference.

Start:3

Start:0

Start:1

Start:2 e

This example skipped in
Exa M p ‘ e class — here for reference.

Start:3
Leave:4

Start:0

Start:1

Start:2 ..

This example skipped in

Exa M p ‘ e class — here for reference.

Start:3
Leave:4

Start:0

Start:1

Start:2
Leave:5

78

Example

Start:3
Leave:4

Start:0

Start:1
Leave: 6

Start:2
Leave:5

This example skipped in
class — here for reference.

79

Example

Start:3
Leave:4

Start:0
Leave: 7

Start:1
Leave: 6

Start:2
Leave:5

This example skipped in
class — here for reference.

Do them in this order:

80

Part 2: breadth-first search

How do we explore a graph?

If we can fly

How do we explore a graph?

If we can fly

Breadth-First Search
Exploring the world with a bird’s-eye view

O Not been there yet

® :
4) ’ Can reach there in
__ zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

’ Can reach there in
three steps

84

Breadth-First Search
Exploring the world with a bird’s-eye view

O Not been there yet

® :
4) ’ Can reach there in
__ zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

’ Can reach there in
three steps

85

Breadth-First Search
Exploring the world with a bird’s-eye view

start

O Not been there yet

’ Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

’ Can reach there in
three steps

86

Breadth-First Search
Exploring the world with a bird’s-eye view

start

O Not been there yet

. Can reach there in
zero steps

‘ Can reach there in
one step

. Can reach there in
two steps

. Can reach there in
three steps

87

Breadth-First Search
Exploring the world with a bird’s-eye view

start

Q Not been there yet

. Can reach there in
zero steps

‘ Can reach there in
one step

. Can reach there in
two steps

. Can reach there in
three steps

\World:
exp\Ored" y

Same disclaimer as for DFS: you may have seen other ways to implement this,

this will be convenient for us.
Breadth-First Search
Exploring the world with pseudocode

« Set L =[] fori=1,...,n L; is the set of nodes
we can reachini

* L, =[w], where w is the start node
steps from w

 Mark w as visited
* Fori=0, ..., n-1:
* Foruin L;

* For each v which is a neighbor of u: O _

* If visn’t yet visited: O L
* mark v as visited, and put itin L;,, 0
®
-1
Go through all the nodes ® L,
in L; and add their o
unvisited neighbors to L;,, o L

BFS also finds all the nodes
reachable from the starting point

It is also a good way to find all
the connected components.

Running time and
extension to directed graphs

* To explore the whole graph, explore the connected

components one-by-one.
e Same argument as DFS: BFS running time is O(n + m)

* Like DFS, BFS also works fine on directed graphs.
Verify these!

Siggi the Studious-Stork

Why is it called breadth-first?
* We are implicitly building a tree:

YOINK!

* First we go as broadly as we can.

92

Pre-lecture exercise

e What Samuel L. Jackson’s Bacon number?

Kevin &\
Bacon - A
Ariana Richards

Samuel L.
Jackson

(Answer: 2)

| wrote the pre-lecture exercise
before | realized that | really wanted
an example with distance 3

It is really hard to find
people with Bacon

94
number 3!

Application of BFS: shortest path

* How long is the shortest path between w and v?

95

Application of BFS: shortest path

* How long is the shortest path between w and v?

O Not been there yet

. Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

Can reach there in
three steps

It’s three!

96

To find the distance between w
and al Other Ve rtlces V The distance between two

vertices is the number of edges in
the shortest path between them.

* Do a BFS starting at w

* ForallvinL

* The shortest path betweenw and v
has length i Lo

* A shortest path between w and v is
given by the path in the BFS tree. |_1

* |f we never found v, the distance
is infinite.

Modify the BFS pseudocode
to return shortest paths!
Prove that this indeed
returns shortest paths!

Gausshasno J
Bacon number "%

Call this the
“BFS’tree”

What have we |learned?

* The BFS tree is useful for computing distances
between pairs of vertices.

* We can find the shortest path between uand vin
time O(m).

Another application of BFS

* Testing bipartite-ness

Pre-lecture exercise: fish

* You have a bunch of fish and two fish tanks.

* Some pairs of fish will fight if put in the same tank.
* Model this as a graph: connected fish will fight.

* Can you put the fish in the two tanks so that there is no fighting?

Bipartite graphs

Can color the vertices red

)) i . and orange so that there
* A bipartite graph looks like this: are no edges between any

Example:

® areintank A

© arein tank B
@—0 if the fish fight

same-colored vertices
‘

\

{

N

Example:

@ are students

© are classes

@0 if the studentis
enrolled in the:class

s this graph bipartite?

=<Z
A
R
[X

How about this one?

How about this one?

This one?

106

Application of BFS:
Testing Bipartiteness

* Color the levels of the BFS tree in
alternating colors.

* If you never color two connected
nodes the same color, then it is
bipartite.

e Otherwise, it’s not.

Breadth-First Search
For testing bipartite-ness

O Not been there yet

3 O Can reach there in
__ zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

’ Can reach there in
three steps

108

Breadth-First Search
For testing bipartite-ness

O Not been there yet

3 O Can reach there in
__ zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

’ Can reach there in
three steps

109

Breadth-First Search
For testing bipartite-ness

start

O Not been there yet

O Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

’ Can reach there in
three steps

110

Breadth-First Search
For testing bipartite-ness

start

Q Not been there yet

. Can reach there in
zero steps

‘ Can reach there in
one step

. Can reach there in
two steps

. Can reach there in
three steps

111

Breadth-First Search
For testing bipartite-ness

start

Q Not been there yet

. Can reach there in
zero steps

‘ Can reach there in
one step

. Can reach there in
two steps

. Can reach there in
three steps

112

Breadth-First Search
For testing bipartite-ness

O Not been there yet

3 O Can reach there in
__ zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

’ Can reach there in
three steps

113

Breadth-First Search
For testing bipartite-ness

O Not been there yet

3 O Can reach there in
__ zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

’ Can reach there in
three steps

114

Breadth-First Search
For testing bipartite-ness

start

O Not been there yet

. Can reach there in
zero steps

‘ Can reach there in
one step

. Can reach there in
two steps

. Can reach there in
three steps

115

Breadth-First Search
For testing bipartite-ness

start

Q Not been there yet

. Can reach there in
zero steps

‘ Can reach there in
one step

. Can reach there in
two steps

. Can reach there in
three steps

116

Breadth-First Search
For testing bipartite-ness

O Not been there yet

. Can reach there in
zero steps

‘ Can reach there in
one step

. Can reach there in
two steps

. Can reach there in
three steps

117

Hang on now.

e Just because this coloring doesn’t
work, why does that mean that
there is no coloring that works?

| can come up
with plenty of bad
colorings on this
legitimately
bipartite graph...

Plucky the

pedantic penguin
118

Make this proof
sketch formal!

Some proof required

Ollie the over-achieving ostrich

* If BFS colors two neighbors the same color, then it’s
found an cycle of odd length in the graph.

©)
There must

= pe an even
number of

start
these edges

This one extra
makes it odd 119

Make this proof
sketch formal!

Some proof required

Ollie the over-achieving ostrich

* If BFS colors two neighbors the same color, then it’s
found an cycle of odd length in the graph.

* But you can never color an odd cycle with two colors
so that no two neighbors have the same color.
e [Fun exercise!]

* So you can’t legitimately color
the whole graph either.
* Thus it’s not bipartite. O

O

120

What have we learned?

BFS can be used to detect
bipartite-ness in time O(n + m).

@

121

Outline

* Part 0: Graphs and terminology

* Part 1: Depth-first search
e Application: topological sorting
* Application: in-order traversal of BSTs

* Part 2: Breadth-first search
e Application: shortest paths

e Application (if time): is a graph bipartite? l

Recap

122

Recap

* Depth-first search
e Useful for topological sorting
e Also in-order traversals of BSTs

* Breadth-first search
» Useful for finding shortest paths
* Also for testing bipartiteness

* Both DFS, BFS:

» Useful for exploring graphs, finding connected
components, etc

123

Still open (next few classes)

* We can now find components in undirected graphs...

* What if we want to find strongly connected components
in directed graphs?

* How can we find shortest paths in weighted graphs?

124

	Slide 1: Lecture 9
	Slide 2: Roadmap
	Slide 3: Outline
	Slide 4: Part 0: Graphs
	Slide 5: Graphs
	Slide 6: Graphs
	Slide 7: Graphs
	Slide 8: Graphs
	Slide 9: Graphs
	Slide 10: Graphs
	Slide 11: Graphs
	Slide 12: Graphs
	Slide 13: Graphs
	Slide 14: Graphs
	Slide 15: Graphs
	Slide 16: Graphs
	Slide 17: Undirected Graphs
	Slide 18: Directed Graphs
	Slide 19: How do we represent graphs?
	Slide 20: How do we represent graphs?
	Slide 21: How do we represent graphs?
	Slide 22: How do we represent graphs?
	Slide 23: In either case
	Slide 24: Trade-offs
	Slide 25: Part 1: Depth-first search
	Slide 26: How do we explore a graph?
	Slide 27: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 28: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 29: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 30: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 31: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 32: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 33: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 34: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 35: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 36: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 37: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 38: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 39: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 40: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 41: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 42: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 43: Depth First Search Exploring a labyrinth with pseudocode
	Slide 44: Depth First Search
	Slide 45: Depth First Search
	Slide 46: Depth First Search
	Slide 47: Depth First Search
	Slide 48: Depth First Search
	Slide 49: Depth First Search
	Slide 50: Depth First Search
	Slide 51: Depth First Search
	Slide 52: This is not the only way to write DFS!
	Slide 53: DFS finds all the nodes reachable from the starting point
	Slide 54: To explore the whole graph
	Slide 55: Why is it called depth-first?
	Slide 56: Running time
	Slide 57: Running time
	Slide 59: You check:
	Slide 60: Pre-lecture exercise
	Slide 61: Application of DFS: topological sorting
	Slide 62: Can’t always eyeball it.
	Slide 63: Let’s do DFS
	Slide 64: Finish times seem useful
	Slide 65: A more general statement (this holds even if there are cycles)
	Slide 66: Proof of this start equation goes to
	Slide 67: Proof of this start equation goes to
	Slide 68: Theorem
	Slide 69: Back to topological sorting
	Slide 70: Topological Sorting (on a DAG)
	Slide 72: What have we learned?
	Slide 73: Example:
	Slide 74: Example
	Slide 75: Example
	Slide 76: Example
	Slide 77: Example
	Slide 78: Example
	Slide 79: Example
	Slide 80: Example
	Slide 81: Part 2: breadth-first search
	Slide 82: How do we explore a graph?
	Slide 83: How do we explore a graph?
	Slide 84: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 85: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 86: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 87: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 88: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 89: Breadth-First Search Exploring the world with pseudocode
	Slide 90: BFS also finds all the nodes reachable from the starting point
	Slide 91: Running time and extension to directed graphs
	Slide 92: Why is it called breadth-first?
	Slide 93: Pre-lecture exercise
	Slide 94: I wrote the pre-lecture exercise before I realized that I really wanted an example with distance 3
	Slide 95: Application of BFS: shortest path
	Slide 96: Application of BFS: shortest path
	Slide 97: To find the distance between w and all other vertices v
	Slide 99: What have we learned?
	Slide 100: Another application of BFS
	Slide 101: Pre-lecture exercise: fish
	Slide 102: Bipartite graphs
	Slide 103: Is this graph bipartite?
	Slide 104: How about this one?
	Slide 105: How about this one?
	Slide 106: This one?
	Slide 107: Application of BFS: Testing Bipartiteness
	Slide 108: Breadth-First Search For testing bipartite-ness
	Slide 109: Breadth-First Search For testing bipartite-ness
	Slide 110: Breadth-First Search For testing bipartite-ness
	Slide 111: Breadth-First Search For testing bipartite-ness
	Slide 112: Breadth-First Search For testing bipartite-ness
	Slide 113: Breadth-First Search For testing bipartite-ness
	Slide 114: Breadth-First Search For testing bipartite-ness
	Slide 115: Breadth-First Search For testing bipartite-ness
	Slide 116: Breadth-First Search For testing bipartite-ness
	Slide 117: Breadth-First Search For testing bipartite-ness
	Slide 118: Hang on now.
	Slide 119: Some proof required
	Slide 120: Some proof required
	Slide 121: What have we learned?
	Slide 122: Outline
	Slide 123: Recap
	Slide 124: Still open (next few classes)

