
Lecture 9
Graphs, BFS and DFS
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Roadmap

Graphs!

Asymptotic 
Analysis

Dynamic 
ProgrammingGreedy Algs

MIDTERM

The
Future!

More detailed schedule on the website!
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Outline

• Part 0: Graphs and terminology

• Part 1: Depth-first search 
• Application: topological sorting

• Application: in-order traversal of BSTs

• Part 2: Breadth-first search
• Application: shortest paths

• Application (if time): is a graph bipartite?
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Part 0: Graphs

4



Graphs

Graph of the internet 
(circa 1999…it’s a lot 
bigger now…) 5



Graphs
Game of Thrones Character 
Interaction Network
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Graphs

Theoretical Computer 
Science academic 
communities
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Graphs jetblue flights
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Graphs debian dependency (sub)graph
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Graphs

Immigration 
flows
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Graphs Potato trade
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Graphs

Soybeans

Water
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Graphs
Graphical models
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Graphs

What eats what in 
the Atlantic ocean?
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Graphs Neural connections 
in the brain
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Graphs

•There are a lot of graphs.

• We want to answer questions about them.
• Efficient routing?
• Community detection/clustering?
• From pre-lecture exercise:

• Computing Bacon numbers

• Signing up for classes without violating pre-req constraints
• How to distribute fish in tanks so that none of them will fight.

• This is what we’ll do for the next several lectures.
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Undirected Graphs

• An undirected graph G has:

• A set V of vertices

• A set E of edges

• Formally, G = (V,E)

• The degree of vertex is the number of 
edges coming out.

• The connected vertices are called 
neighbors.

• Example

• V = {1,2,3,4}

• E = { {1,3}, {2,4}, {3,4}, {2,3} }

1

2

3

4

• The degree of vertex 4 is 2.  
• There are 2 edges coming out.

• Vertex 4’s neighbors are 2 and 3

G = (V,E) 
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Directed Graphs

1

2

3

4
G = (V,E) 

• The in-degree  of vertex 4 is 2.
• The out-degree of vertex 4 is 1.
• Vertex 4’s incoming neighbors are 2,3 
• Vertex 4’s outgoing neighbor is 3.

18

• A directed graph G has:

• A set V of vertices

• A set E of DIRECTED edges

• Formally, G = (V,E)

• The in-degree of vertex is the number of 
edges coming in.

• The out-degree of vertex is the number of 
edges going out.

• Example

• V = {1,2,3,4}

• E = { (1,3), (2,4), (3,4), (4,3), (3,2) }



How do we represent graphs?

• Option 1: adjacency matrix

1

2

3

4

1          2           3           4

1
     2

      3
      4

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0
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How do we represent graphs?

• Option 1: adjacency matrix

1

2

3

4

1          2           3           4

1
     2

      3
      4

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0
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How do we represent graphs?
• Option 1: adjacency matrix

Destination
1          2           3           4

1
      2

      3
      4

So
u

rce

0 0
0 0

1 0
0 1

0 1
0 0

0 1
1 0

 

1

2

3

4
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How do we represent graphs?

• Option 2: adjacency lists.

1

2

3

4

How would you 
modify this for 
directed graphs?

4’s neighbors are 
2 and 3

1 2 3 4

3 4 1

4

2

33
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In either case

• Vertices can store other information
• Attributes (name, IP address, …)

• helper info for algorithms that we will perform on the 
graph

• Basic operations:
• Edge Membership: Is edge e in E?

• Neighbor Query: What are the neighbors of vertex v?
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Trade-offs

Edge membership
Is e = {v,w} in E?

Neighbor query
Give me v’s neighbors.

Say there are n vertices 
and m edges.

Space requirements

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

 

1 2 3 4

3 4 1

4

2

33

O(1)

O(n)

O(deg(v)) or 
O(deg(w))

O(deg(v))

O(n2) O(n + m)

Generally better for sparse 
graphs (where 𝑚 ≪ 𝑛2)

We’ll assume this 
representation for 
the rest of the class

See Lecture 9 IPython notebook for an actual 
implementation!
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Part 1: Depth-first search
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How do we explore a graph?

1

2

3

4

5

8

6
7

At each node, you can get a list of neighbors, 
and choose to go there if you want.
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start

27



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with pseudocode

• Each vertex keeps track of whether it is:
• Unvisited

• In progress

• All done

• Each vertex will also keep track of:

• The time we first enter it.

• The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go 
through.  This way has more bookkeeping – the bookkeeping will be useful later!
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Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

w

currentTime = 0
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

Start:0

currentTime = 1

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

Start:0

currentTime = 1

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

Start:0

Start: 1

currentTime = 2

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

Start:0

Start: 1

Takes until 
currentTime = 20

currentTime = 20
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

Start:0

Start: 1

Takes until 
currentTime = 20

currentTime = 21
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

Start:0

Start: 1
End: 21

Takes until 
currentTime = 20

currentTime = 21

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime

• currentTime ++

• Mark w as in progress.

• for v in w.neighbors:

• if v is unvisited:

• currentTime 

         = DFS(v, currentTime)

• currentTime ++

• w.finishTime = currentTime

• Mark w as all done

• return currentTime 

unvisited

in progress

all done

Start:0

Start: 1
End: 21

Takes until 
currentTime = 20

currentTime = 22

w

51

etc



This is not the only way to write DFS!

• See the textbook for an iterative version.

• (And/or figure out how to do it yourself!)
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DFS finds all the nodes reachable 
from the starting point

start

One application of DFS: finding 
connected components.

In an undirected graph, this is 
called a connected component.
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To explore the whole graph

• Do it repeatedly!

start

start
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Why is it called depth-first?
• We are implicitly building a tree:

• First, we go as deep as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call this the 
“DFS tree”
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Running time

• We look at each edge at most twice.
• Once from each of its endpoints

• We visit each vertex at most once

• And basically we don’t do anything else.

• So…

O(m+n)
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Running time
• Assume we are using the linked-list format for 

G=(V,E).

• We visit each vertex in G exactly once.
• Here, “visit” means “call DFS on”

• At each vertex w, we:
• Do some book-keeping: O(1) 

• Loop over w’s neighbors and check if they are visited 
(and then potentially make a recursive call): O(1) per 
neighbor or O(deg(w)) total.

• Total time:
• σ𝑤∈𝑉(𝑂 deg 𝑤 + 𝑂 1 )

•                                         = 𝑂 |𝐸| + 𝑉 = 𝑶(𝒏 + 𝒎) 
57



You check:

Siggi the studious stork

DFS works fine on directed graphs too!

A

C

B

Only walk to C, not to B.
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Pre-lecture exercise

• How can you sign up for classes so that you never 
violate the pre-req requirements?

• More practically, how can you install packages 
without violating dependency requirements?
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Application of DFS: topological sorting

• Find an ordering of vertices so that all of the 
dependency requirements are met.
• Aka, if v comes before w in the ordering, there is not an 

edge from w to v.

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles: 
it is a Directed Acyclic Graph (DAG) 61



Can’t always eyeball it.
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Let’s do DFS

tar

coreutils

dpkg

libbz2

libselinux1

multiarch
-support

start:2

start:0

start:1

start:3

finish:4

finish:5
finish:6

finish:8
start:7

start:9

finish:10

finish:11

What do you notice about the 
finish times?  Any ideas for how 
we should do topological sort?

1 minute think
1 minute pair+share
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Finish times seem useful

A B

Claim: In general, we’ll always have:

Suppose the underlying 
graph has no cycles

finish: [smaller]finish: [larger]

To understand why, let’s go back to that DFS tree.
64



A more general statement 
(this holds even if there are cycles)

• If v is a descendant of w in this tree:

• If w is a descendant of v in this tree:

• If neither are descendants of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

(check this 
statement 
carefully!)

w

v

w

v

timeline
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Proof of this →
If

Then B.finishTime < A.finishTime

A B

Suppose the underlying 
graph has no cycles

• Case 1: B is a descendant of A in the 
DFS tree.

• Then

• aka, B.finishTime < A.finishTime.

A.startTime

A.finishTimeB.startTime

B.finishTime

A

B
66



Proof of this →
If

Then B.finishTime < A.finishTime

A B

Suppose the underlying 
graph has no cycles

• Case 2: B is a NOT descendant of A in the 
DFS tree.
• Notice that A can’t be a descendant of B in the DFS 

tree or else there’d be a cycle; so it looks like this

• Then we must have explored B before A.
• Otherwise we would have gotten to B from A, and B 

would have been a descendant of A in the DFS tree.

• Then

• aka, B.finishTime < A.finishTime.

A.startTime
A.finishTime

B.startTime
B.finishTime

B

A
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Theorem

• If we run DFS on a directed acyclic graph,

68

If

Then B.finishTime < A.finishTime

A B



Back to 
topological sorting

• In what order should I install packages?

• In reverse order of finishing time in DFS!
• Then, the theorem says we’ll never have a “backward” edge

If

Then B.finishTime < A.finishTime

A B

69

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4



Topological Sorting (on a DAG)
• Do DFS

• When you mark a vertex as all done, 
put it at the beginning of the list.

• dpkg

• coreutils

• tar

• libbz2

• libselinux1

• multiarch_support

70

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

start:3

finish:4

Check out iPython 
notebook for an 

implementation!



What have we learned?

• DFS can help you solve the topological sorting 
problem
• That’s the fancy name for the problem of finding an 

ordering that respects all the dependencies

• Thinking about the DFS tree is helpful.
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Example: 

A

B

C

D

Unvisited

In progress

All done

Start:0

This example skipped in 
class – here for reference.
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

This example skipped in 
class – here for reference.
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:2

This example skipped in 
class – here for reference.
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:2

Start:3

This example skipped in 
class – here for reference.
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:3
Leave:4

Start:2

B

This example skipped in 
class – here for reference.
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1

Start:3
Leave:4

Start:2
Leave:5

BD

This example skipped in 
class – here for reference.
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDC

This example skipped in 
class – here for reference.
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Example

A

B

C

D

Unvisited

In progress

All done

Start:0
Leave: 7

Start:1
Leave: 6

Start:3
Leave:4

Start:2
Leave:5

BDCA

Do them in this order:

This example skipped in 
class – here for reference.
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Part 2: breadth-first search

81



How do we explore a graph?

1

If we can fly

2

3

4

8
6

5

9

7
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How do we explore a graph?

1

If we can fly

2

3

4

8
6

5

9

7
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

Can reach there in 
three steps

Can reach there in 
zero steps

start
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
Exploring the world with a bird’s-eye view

start

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
Exploring the world with pseudocode

• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:

• For u in Li:
• For each v which is a neighbor of u:

• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes 
we can reach in i 

steps from w

Go through all the nodes 
in Li and add their 
unvisited neighbors to Li+1

-

L1

L2

L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this, 
this will be convenient for us.
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BFS also finds all the nodes 
reachable from the starting point

start

It is also a good way to find all 
the connected components.
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Running time and 

extension to directed graphs

• To explore the whole graph, explore the connected 
components one-by-one.
• Same argument as DFS: BFS running time is O(n + m)

• Like DFS, BFS also works fine on directed graphs.

Siggi the Studious Stork

Verify these!
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Why is it called breadth-first?
• We are implicitly building a tree:

• First we go as broadly as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F
D

E

Call this the 
“BFS tree”

L3

L1

L2

L0

92



Pre-lecture exercise

• What Samuel L. Jackson’s Bacon number?

Samuel L.
JacksonKevin

Bacon

Ariana Richards

(Answer: 2)93



I wrote the pre-lecture exercise 
before I realized that I really wanted 
an example with distance 3

Kevin
Bacon

Oliver Sacks It is really hard to find 
people with Bacon 

number 3!

Tilda 
Swinton

James 
McAvoy
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Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?
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Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

Can reach there in 
three steps

Can reach there in 
zero steps

It’s three!
96



To find the distance between w 
and all other vertices v
• Do a BFS starting at w

• For all v in Li 
• The shortest path between w and v 

has length i

• A shortest path between w and v is 
given by the path in the BFS tree.

• If we never found v, the distance 
is infinite.

The distance between two 
vertices is the number of edges in 
the shortest path between them.

w

v Call this the 
“BFS tree”

L3

L1

L2

L0

Gauss has no 
Bacon number

Modify the BFS pseudocode 

to return shortest paths!
Prove that this indeed 
returns shortest paths!
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• The BFS tree is useful for computing distances 
between pairs of vertices.

• We can find the shortest path between u and v in 
time O(m).

What have we learned?
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Another application of BFS

• Testing bipartite-ness

100



Pre-lecture exercise: fish
• You have a bunch of fish and two fish tanks.

• Some pairs of fish will fight if put in the same tank.
• Model this as a graph: connected fish will fight.

• Can you put the fish in the two tanks so that there is no fighting?
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Bipartite graphs

• A bipartite graph looks like this:

Can color the vertices red 
and orange so that there 

are no edges between any 
same-colored vertices

Example:
are students

are classes
if the student is 

enrolled in the class

Example:
are in tank A
are in tank B

if the fish fight
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Is this graph bipartite?

103



How about this one?

104



How about this one?

105



This one?
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Application of BFS: 

Testing Bipartiteness

• Color the levels of the BFS tree in 
alternating colors.

• If you never color two connected 
nodes the same color, then it is 
bipartite.

• Otherwise, it’s not.

A

B

C

G

F
D

E

107



Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps

109



Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Hang on now.

• Just because this coloring doesn’t 
work, why does that mean that 
there is no coloring that works?

Plucky the 
pedantic penguin

I can come up 
with plenty of bad 
colorings on this 
legitimately 
bipartite graph…
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Some proof required

• If BFS colors two neighbors the same color, then it’s 
found an cycle of odd length in the graph.

start

Ollie the over-achieving ostrich

Make this proof 
sketch formal!

A

B

C

G

F
D

E

There must 
be an even 
number of 
these edges

This one extra 
makes it odd 119



Some proof required

• If BFS colors two neighbors the same color, then it’s 
found an cycle of odd length in the graph.

• But you can never color an odd cycle with two colors 
so that no two neighbors have the same color.
• [Fun exercise!]

Ollie the over-achieving ostrich

Make this proof 
sketch formal!

• So you can’t legitimately color 
the whole graph either.

• Thus it’s not bipartite.
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What have we learned?

BFS can be used to detect 
bipartite-ness in time O(n + m).
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Outline

• Part 0: Graphs and terminology

• Part 1: Depth-first search 
• Application: topological sorting

• Application: in-order traversal of BSTs

• Part 2: Breadth-first search
• Application: shortest paths

• Application (if time): is a graph bipartite?

Recap
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Recap

• Depth-first search
• Useful for topological sorting

• Also in-order traversals of BSTs

• Breadth-first search
• Useful for finding shortest paths

• Also for testing bipartiteness

• Both DFS, BFS:
• Useful for exploring graphs, finding connected 

components, etc
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Still open (next few classes)

• We can now find components in undirected graphs…
• What if we want to find strongly connected components 

in directed graphs?

• How can we find shortest paths in weighted graphs?

124


	Slide 1: Lecture 9
	Slide 2: Roadmap
	Slide 3: Outline
	Slide 4: Part 0: Graphs
	Slide 5: Graphs
	Slide 6: Graphs
	Slide 7: Graphs
	Slide 8: Graphs
	Slide 9: Graphs
	Slide 10: Graphs
	Slide 11: Graphs
	Slide 12: Graphs
	Slide 13: Graphs
	Slide 14: Graphs
	Slide 15: Graphs
	Slide 16: Graphs
	Slide 17: Undirected Graphs
	Slide 18: Directed Graphs
	Slide 19: How do we represent graphs?
	Slide 20: How do we represent graphs?
	Slide 21: How do we represent graphs?
	Slide 22: How do we represent graphs?
	Slide 23: In either case
	Slide 24: Trade-offs
	Slide 25: Part 1: Depth-first search
	Slide 26: How do we explore a graph?
	Slide 27: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 28: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 29: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 30: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 31: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 32: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 33: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 34: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 35: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 36: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 37: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 38: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 39: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 40: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 41: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 42: Depth First Search  Exploring a labyrinth with chalk and a piece of string
	Slide 43: Depth First Search  Exploring a labyrinth with pseudocode
	Slide 44: Depth First Search 
	Slide 45: Depth First Search  
	Slide 46: Depth First Search  
	Slide 47: Depth First Search  
	Slide 48: Depth First Search  
	Slide 49: Depth First Search  
	Slide 50: Depth First Search  
	Slide 51: Depth First Search  
	Slide 52: This is not the only way to write DFS!
	Slide 53: DFS finds all the nodes reachable from the starting point
	Slide 54: To explore the whole graph
	Slide 55: Why is it called depth-first?
	Slide 56: Running time
	Slide 57: Running time
	Slide 59: You check:
	Slide 60: Pre-lecture exercise
	Slide 61: Application of DFS: topological sorting
	Slide 62: Can’t always eyeball it.
	Slide 63: Let’s do DFS
	Slide 64: Finish times seem useful
	Slide 65: A more general statement  (this holds even if there are cycles)
	Slide 66: Proof of this start equation goes to
	Slide 67: Proof of this start equation goes to
	Slide 68: Theorem
	Slide 69: Back to topological sorting
	Slide 70: Topological Sorting (on a DAG)
	Slide 72: What have we learned?
	Slide 73: Example: 
	Slide 74: Example
	Slide 75: Example
	Slide 76: Example
	Slide 77: Example
	Slide 78: Example
	Slide 79: Example
	Slide 80: Example
	Slide 81: Part 2: breadth-first search
	Slide 82: How do we explore a graph?
	Slide 83: How do we explore a graph?
	Slide 84: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 85: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 86: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 87: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 88: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 89: Breadth-First Search Exploring the world with pseudocode
	Slide 90: BFS also finds all the nodes reachable from the starting point
	Slide 91: Running time and  extension to directed graphs
	Slide 92: Why is it called breadth-first?
	Slide 93: Pre-lecture exercise
	Slide 94: I wrote the pre-lecture exercise before I realized that I really wanted an example with distance 3
	Slide 95: Application of BFS: shortest path
	Slide 96: Application of BFS: shortest path
	Slide 97: To find the distance between w and all other vertices v
	Slide 99: What have we learned?
	Slide 100: Another application of BFS
	Slide 101: Pre-lecture exercise: fish
	Slide 102: Bipartite graphs
	Slide 103: Is this graph bipartite?
	Slide 104: How about this one?
	Slide 105: How about this one?
	Slide 106: This one?
	Slide 107: Application of BFS:  Testing Bipartiteness
	Slide 108: Breadth-First Search For testing bipartite-ness
	Slide 109: Breadth-First Search For testing bipartite-ness
	Slide 110: Breadth-First Search For testing bipartite-ness
	Slide 111: Breadth-First Search For testing bipartite-ness
	Slide 112: Breadth-First Search For testing bipartite-ness
	Slide 113: Breadth-First Search For testing bipartite-ness
	Slide 114: Breadth-First Search For testing bipartite-ness
	Slide 115: Breadth-First Search For testing bipartite-ness
	Slide 116: Breadth-First Search For testing bipartite-ness
	Slide 117: Breadth-First Search For testing bipartite-ness
	Slide 118: Hang on now.
	Slide 119: Some proof required
	Slide 120: Some proof required
	Slide 121: What have we learned?
	Slide 122: Outline
	Slide 123: Recap
	Slide 124: Still open (next few classes)

