
CS 161 (Stanford, Winter 2025) Section 1

Asymptotic analysis

Review of definitions

Let f , g be functions from the positive integers to the non-negative reals.

Definition 1: (Big-Oh notation)

f (n) = O(g(n)) if there exist constants c > 0 and n0 such that for all n ≥ n0,

f (n) ≤ c · g(n).

Definition 2: (Big-Omega notation)

f (n) = Ω(g(n)) if there exist constants c > 0 and n0 such that for all n ≥ n0,

f (n) ≥ c · g(n).

Definition 3: (Big-Theta notation)

f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)).

Some additional definitions

You will use “Big-Oh notation”, “Big-Omega notation”, and “Big-Theta notation” A LOT
in class. Additionally, you may occasionally run into “little-oh notation” and “little-omega
notation”:

Definition 4: (Little-oh notation)

f (n) = o(g(n)) if for every constant c > 0 there exist a constant n0 such that for all n ≥ n0,

f (n) < c · g(n).

Definition 5: (Little-omega notation)

f (n) = ω(g(n)) if for every constant c > 0 there exist a constant n0 such that for all
n ≥ n0,

f (n) > c · g(n).

1

1 Asymptotic analysis questions

1.1 Limit definitions of asymptotic relationships

If you’ve taken a calculus course, the first thing you’ll learn is the definition of a limit. For
our purposes, we’ll only use limits as n approaches ∞:

Definition 6: (Limit at infinity)

limn→∞ f (n) = c if for any ε > 0, there exists n0 such that |f (n)− c | < ε for all n ≥ n0.

limn→∞ f (n) =∞ if for any m > 0, there exists n0 such that f (n) > m for all n ≥ n0.

(a) Show that if limn→∞ f (n)/g(n) = c > 0, then f (n) = Θ(g(n)).

(b) Show that if limn→∞ f (n)/g(n) = 0, then f (n) = o(g(n)).

(c) Assuming limn→∞ f (n)/g(n) exists, give conditions in terms of this limit that correspond
to f (n) = O(g(n)), f (n) = Ω(g(n)), and f (n) = ω(g(n)). (No need to prove that
your conditions are correct.)

Solution

(a) Assume limn→∞ f (n)/g(n) = c for some c > 0. By selecting ε = c/2, there is
some n0 such that c/2 < f (n)/g(n) < 3c/2 for all n ≥ n0. Rearranging, we have
that f (n) > c/2 · g(n), showing that f (n) = Ω(g(n)), and f (n) < 3c/2 · g(n),
showing that f (n) = O(g(n)). Therefore f (n) = Θ(g(n)).

(b) Assume limn→∞ f (n)/g(n) = 0. Then for every constant c > 0, there is some
n0 such that f (n)/g(n) < c for all n ≥ n0. Rearranging, f (n) < c · g(n) for all
n ≥ n0, which is the definition of f (n) = o(g(n)).

(c) • If limn→∞ f (n)/g(n) = c ≥ 0, then f (n) = O(g(n)).
• If limn→∞ f (n)/g(n) = c > 0 or limn→∞ f (n)/g(n) = ∞, then f (n) =
Ω(g(n)).

• If limn→∞ f (n)/g(n) =∞, then f (n) = ω(g(n)).

1.2 Properties of asymptotic relationships

Are the following statements true or false? f (n), g(n), and h(n) are all non-negative functions
of the integers 0, 1, 2, . . .

(a) If f (n) = O(g(n)), then g(n) = Θ(g(n) + f (n)).

(b) If f (n) = O(g(n)), then f (n) · h(n) = O(g(n) · h(n)).

(c) If f (n) = O(g(n)), then either f (n) = o(g(n)) or f (n) = Θ(g(n)).

(d) If f (n) = O(g(n)) and h(n) is an integer-valued function of n that increases to ∞,
then h(f (n)) = O(h(g(n))).

2

(e) If f (n) = O(g(n)) and h(n) is an integer-valued function of n that increases to ∞,
then f (h(n)) = O(g(h(n))).

(f) If Algorithm 1 runs in time f (n) on inputs of size n, and Algorithm 2 runs in time g(n)
on inputs of size n, where f (n) = o(g(n)), then we should always prefer Algorithm 1
over Algorithm 2.

Solution

(a) True. Let c > 0 be a constant such that f (n) ≤ c · g(n) for all n ≥ n0. Then
g(n) + f (n) ≤ g(n) + c · g(n) = (1 + c)g(n) for all n ≥ n0, so g(n) + f (n) =
O(g(n)). Since f is nonnegative, g(n)+ f (n) ≥ g(n), so g(n)+ f (n) = Ω(g(n)).
Therefore g(n) = Θ(g(n) + f (n)).

(b) True. Let c > 0 be a constant such that f (n) ≤ c · g(n) for all n ≥ n0.
Multiplying both sides by h(n) ≥ 0 shows that f (n) · h(n) ≤ c · g(n) · h(n), so
f (n) · h(n) = O(g(n) · h(n)).

(c) False. For example, consider f (n) = 1 and

g(n) =

{
1 if n is odd

n if n is even
.

Then f (n) ≤ g(n) for all n, so f (n) = O(g(n)). But f (n) = g(n) for all odd
n, which means that f (n) cannot be less than c · g(n) for all c > 0, hence f (n)
is not o(g(n)). And f (n) = 1

n
g(n) for all even n, meaning that f (n) cannot be

greater than cġ(n) for any c > 0, so f (n) is not Ω(g(n)).
(d) False. Consider f (n) = 2 log n, g(n) = log n, and h(n) = 2n. Then f (n) =
O(g(n)) and h(n) is increasing, but h(f (n)) = 22 log n = n2, while h(g(n)) =
2log n = n. Therefore h(f (n)) is not O(h(g(n)).

(e) True. Let c > 0 be a constant such that for all n ≥ n0, f (n) ≤ c · g(n). Let
n′ be the smallest integer such that h(n′) ≥ n0. Then h(n) ≥ n0 for all n ≥ n′
because h is increasing. Therefore f (h(n)) ≤ c · g(h(n)) for all n ≥ n′, which
shows that f (h(n)) = O(g(h(n)).

(f) False. There are many reasons why we might prefer Algorithm 2. For example, if
we know we will only use the algorithm on small inputs, Algorithm 2 may be faster
in real life despite being worse for large n. Algorithm 2 might also have other
desirable properties separate from runtime, such as protecting privacy, treating
inputs fairly, or providing an explanation for its output.

2 Induction

You’re a chef at an internationally-renowned pancake restaurant, and have just made a big
stack of n pancakes. However, you’re serving a picky customer who wants the pancakes to be
sorted by size, with the largest on the bottom of the stack and the smallest at the top. You

3

can sort the stack by inserting your spatula somewhere in the stack and flipping the pancakes
above that point, reversing their order. Give an algorithm for sorting the stack of pancakes
that requires O(n) flip operations.

Hint: use induction to show that a stack of n pancakes can be sorted using 2n − 3 flips.

Bonus question: Can we use this approach to beat all known sorting algorithms and sort a
list in O(n) time? Why or why not?

Solution

Inductive hypothesis: Any stack of n pancakes can be sorted using 2n − 3 flips.
Base case: A stack of two pancakes requires at most one flip to reverse the order.
Inductive step: Assume a stack of k pancakes can be sorted using 2k − 3 flips. Here
is a procedure for sorting k + 1 pancakes. Identify the largest pancake, then flip just
below it so that it is on top of the stack, then flip the entire stack so that the largest
pancake is on the bottom. Then sort the remaining k pancakes using our inductive
hypothesis. This requires a total of 2k − 3 + 2 = 2(k + 1) − 3 flips, so the inductive
hypothesis holds for k + 1 pancakes.
Conclusion: By induction, the hypothesis holds for all n ≥ 2.
Bonus: This does not give us an O(n) sorting algorithm because the flip operation
cannot be implemented in O(1) time on a computer.

3 Bad induction

In this class, you will prove a lot of claims, many of them by induction. You might also prove
some wrong claims, and catching those mistakes will be an important skill!

The following are examples of a false proof where an untrue claim has been ’proven’ using
induction (with some errors or missing details, of course). Your task is to investigate the
’proofs’ and identify the mistakes made.

3.1

Fake Claim 1: All numbers are equal.

Inductive hypothesis: Any set of k numbers are all equal to each other.

Base Case: For k = 1, any one number is equal to itself.

Inductive Step: Suppose the inductive hypothesis holds for k ; we will show that it is also
true for k + 1. Given a set of k + 1 numbers in an arbitrary order, the first k of them are all
equal by our inductive hypothesis. Similarly, the last k are all equal. Therefore all k +1 must
be equal to each other (see diagram below).

4

︸ ︷︷ ︸
k numbers

x1,

k numbers︷ ︸︸ ︷
x2, . . . , xk , xk+1

Conclusion: By induction, the claim holds for all k ≥ 1.

Solution

The inductive step implicitly assumes that there is some overlap between the first k
and the last k numbers in the set of k + 1 numbers, but this is not true in a set of 2
numbers. Therefore the inductive chain breaks at the very first step.

3.2

Fake Claim 2: For every non-negative integer n, 2n = 1.

Inductive Hypothesis: For all integers n such that 0 ≤ n ≤ k , 2n = 1.

Base Case: For n = 0, 20 = 1.

Inductive Step: Suppose the inductive hypothesis holds for k ; we will show that it is also
true for k + 1, i.e. 2k+1 = 1. We have

2k+1 =
22k

2k−1

=
2k · 2k

2k−1

=
1 · 1
1

(by strong induction hypothesis)

= 1

Conclusion: By strong induction, the claim follows.

Solution

The error in this proof occurs in the inductive step. Given that we induct on k with
a base case of k = 0, in order for the inductive hypothesis to apply to the denomina-
tor, the exponent, k − 1, must be a non-negative integer. This requires the implicit
assumption that k ≥ 1. The inductive step must hold for k = 0, so the assumption
that k ≥ 1 is invalid and the inductive step fails.

5

3.3

Fake Claim 3:

1

1 · 2 +
1

2 · 3 + . . .︸ ︷︷ ︸
n terms

=
3

2
−
1

n
. (1)

Inductive Hypothesis: (1) holds for n = k

Base Case: For n = 1,
1

1 · 2 = 1/2 =
3

2
−
1

1
.

Inductive Step: Suppose the inductive hypothesis holds for n = k ; we will show that it is
also true for n = k + 1. We have(
1

1 · 2 +
1

2 · 3 + . . .
1

(k − 1) · k

)
+

1

k · (k + 1) =
3

2
−
1

k
+

1

k · (k + 1) (by induction hypothesis)

=
3

2
−
1

k
+
1

k
−
1

k + 1

=
3

2
−
1

k + 1
.

Conclusion: By weak induction, the claim follows.

Solution

The first part of the long derivation of the inductive step is wrong — the summation
in the parentheses only contains k − 1 summands! It should contain k terms, so it is
missing the last term.

4 Matrix multiplication

In lecture, you have seen how digit multiplication can be improved upon with divide and
conquer. Let us see a more generalized example of Matrix multiplication. Assume that we
have matrices X and Y and we’d like to multiply them. Both matrices have n rows and n
columns.

For this question, you can make the simplifying assumption that the product of any two
entries from X and Y can be calculated in O(1) time.

4.1

What is the naive solution and what is its runtime? Think about how you multiply matrices.

6

Solution

The naive solution is that we will multiply row by column to get each element of the
new matrix. Each new element of the new matrix is a sum of a row multiplied by a
column, which takes n time, and there are n2 new element to compute, resulting in a
runtime of O(n3).

4.2

Now if we divide up X and Y into quarters like this:

XY =

[
A B

C D

] [
E F

G H

]
=

[
AE + BG AF + BH

CE +DG CF +DH

]
We now have a divide and conquer strategy! Find the recurrence relation of this strategy and
the runtime of this algorithm. (You may assume that n is a power of 2.)

Solution

The recurrence relation of this approach is T (n) = 8T (n
2
) + O(n2) because you have

8 subproblems, and cutting subproblem size by 2, while doing n2 additions to combine
the subproblems. Using the recurrence, we know that at the last level of recursion we
will have 8log(n) subproblems of size O(1).

8log(n) = nlog(8) = n3

Thus, this approach is at least O(n3). Looks like we did not improve the running time
at all!

4.3

Can we do better? It turns out we can by calculating only 7 of the sub problems:

P1 = A(F −H) P5 = (A+D)(E +H)

P2 = (A+ B)H P6 = (B −D)(G +H)
P3 = (C +D)E P7 = (A− C)(E + F)
P4 = D(G − E)

And we can solve XY by

XY =

[
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

]
We now have a more efficient divide and conquer strategy! What is the recurrence relation
of this strategy and what is the runtime of this algorithm?

7

Solution

The recurrence relation of this algorithm is T (n) = 7T (n
2
) + O(n2) because you have

7 subproblems, and cutting subproblem size by 2, while doing n2 additions to combine
the subproblems. Using similar calculation to above, we calculate that there are ≈
n2.81 subproblems of size O(1). We’ll show later in class that just as with Karatsuba
multiplication, this determines the runtime to be O(n2.81) (i.e. the work done at higher
levels of the subproblem decomposition is asymptotically negligible).

8

	Asymptotic analysis questions
	Limit definitions of asymptotic relationships
	Properties of asymptotic relationships

	Induction
	Bad induction
	
	
	

	Matrix multiplication
	
	
	

