CS 161 (Stanford, Winter 2026) Section 2

1 Divide and Conquer

1.1 Finding a fixed point of an array

Given a l-indexed sorted array A of n integers (repeats allowed) such that A[1l] > 1 and
A[n] < n, a (very) special case of Tarski's fixed point theorem says that there is some /i such
that A[/] = i. Design an algorithm for finding such an /i and provide its runtime.

Description: \We use a version of binary search. At each iteration, there are three
cases to handle:

e Case 1: A[mid] = mid], we found the fixed point.

e Case 2: A[mid] < mid. Recurse on the left half since that produces a smaller
instance of the original problem. Note that all three conditions are met: the
subarray is sorted, the first element A[1] > 1, and the last element of the subarray
A[mid — 1] < A[mid] < mid.

e Case 3: A[mid] > mid. Similar reasoning as Case 2, but flipped.

Time Complexity: At each iteration we perform O(1) work and divide the size of the
array in half. This takes O(log(n)) time in total.
Code:
def fixedPoint(A):
Assume A is 1-indexed
left =1
right = len(A)
mid = 1
while A[mid] != mid:
mid = int((left + right) // 2)
if A[mid] == mid:

break
elif A[mid] < mid:
right = mid

elif A[mid] > mid:
left = mid + 1
return A[mid]

1.2 Maximum sum subarray

Given an array of integers A[l..n], find a contiguous subarray A[/,..j] with the maximum
possible sum. The entries of the array might be positive or negative.

1. What is the complexity of a brute force solution?

2. The maximum sum subarray may lie entirely in the first half of the array or entirely in
the second half. What is the third and only other possible case?

3. Using the above apply divide and conquer to arrive at a more efficient algorithm.
(a) Describe your algorithm in words.
(b) What is the time complexity of your solution?

4. Advanced (Take Home) - Can you do even better using other non-recursive methods?
(O(n) is possible)

1. The brute force approach involves summing up all possible O(n?) subarrays and
finding the max among them for a total run time of O(n®) . We can optimize
this by pre-computing the running sums for the array so that we can find the sum
of each subarray in O(1) giving us a total run time of O(n?)

2. The maximum sum subarray can also overlap both halves; in other words it passes
through the middle element.

3. Description: We divide the array into two and recurse to find the maximum sub
array in the two segments. The best subarray of the third type consists of the
best subarray that ends at n/2 and the best subarray that starts at n/2. To arrive
at the final answer we return the max among these three types.

Time Complexity: We can compute the third case in O(n) time. This gives
us a recurrence relation of the form T(n) = 2T (n/2) + O(n) which solves to
T(n) = O(nlogn).
Code (not required, included for clarity):
def maxSubArray(A, 1, r):
if 1 ==
return 1, r, A[1l]

mid = (1 +r) // 2

first case: entirely in left half
11, r1, V1 = maxSubArray(A, 1, mid)

second case: entirely in right half
12, r2, V2 = maxSubArray(A, mid + 1, r)

third case: crossing the midpoint

maxL = -o00
suml. = O
left = mid

for i from mid down to 1:
sumlL = sumlL + A[i]
if suml > maxL:
maxL. = sumL
left

i

maxR -00

sumR 0

right = mid + 1

for i from mid + 1 to r:
sumR = sumR + A[i]

if sumR > maxR:

Il

maxR = sumR
right = i

V3 = maxL + maxR

if V1 > V2 and V1 > V3:
return 11, r1, V1

else if V2 > V1 and V2 > V3:
return 12, r2, V2

else:
return left, right, V3

2 Space Complexity

Given an array of size n — 1 containing all the integers between 1 and n except for one (not
necessarily sorted), design an algorithm to find the missing number using O(log(n)) extra
space.

One way is to loop through the array and sum up all of the numbers. Then we can use
the formula for the sum of all the numbers from 1 to n (which equals n(n+1)/2) and
subtract our sum from that value to find the missing number. This runs in time O(n)
because we just read through the array once and then do one calculation.

3 Recurrence Relations

Recall the Master theorem from lecture:

Theorem 0.1 Given a recurrence T(n) = aT (%) + O(n?) with a > 1, and b > 1 and

O(n%logn) ifa=b?
T(n) =< O(n9) if a < b9
O(n'°9») if a > b?
What is the Big-O runtime for algorithms with the following recurrence relations?
1. T(n) =3T(5)+ O(n?)
2. T(n)=4T(35)+O(n)
3. T(n)=2T(y/n)+ O(logn)

1. Using the Master Theorem, a=3,b=2, and d =2. Since a=3 < b? =4, we
fall into the second case. So, the runtime is O(n?) = O(n?).

2. Using the Master Theorem, a=4,b=2, and d = 1. Since a=4 > b? =2, we
fall into the third case. So the runtime is O(n'°%?) = O(n/°%*) = O(n?).

3. In order to solve this question, we must use a substitution trick. Here, we assume
that T(n) is non-decreasing and we only consider values of n that are power of
2. Define k =logn, so n=2% and /n = 25, So the recurrence relation is:

T(2X) = 2T(22) + O(k)
Next, let S(k) = T(2¥) so S(X) = T(22):
S(k) = 25(%) + O(k)
Using master theorem, we get

S(k) = O(k%log k) = O(klog k) = O(log nlog(log n))

4 Select algorithm

In lecture, we encountered the Select algorithm to find the kth smallest element in an array.
We saw that the time complexity of this algorithm depends on how close our pivot element
is to the median of the array. This problem explores this dependence in more detail.

1. If we are guaranteed to select exactly the median as our pivot (i.e. we get a 50-50
split), what is the runtime of Select? What if we have no guarantees on our pivot?

2. If we are guaranteed to select a pivot that gives us at worst a c-(1 — ¢) split, where
% < ¢ < 1 is some constant that doesn't depend on n, what is the runtime of Select?

3. Assume that in the worst case, it takes more than a constant number of splits to cut
the size of our array in half. (This means that the number of splits required is Q(1)

4

but not ©(1), i.e. w(1).) Show that the runtime of Select in this case must be larger
than O(n).

1. If we select exactly the median, then we divide the array in half each time, so the
maximum depth of our recursion tree is log n. Since the amount of work at each
level of the tree is equal to the current length of the subarray, the total amount

of work is
logn

> 2 =0(n).

If we select the worst case element each time, we only decrease the length of A
by 1 in each step. Therefore the total runtime is

i/’ = 0(n?).

2. In this case, we are guaranteed to at worst multiply the length of A by ¢ < 1.
Therefore after t levels of recursion, the size of our subarray is at most n - ct.
Solving for the value of t that makes this equal to 1, we find that the maximum
depth of our recursive tree is t = logn+ log(1/c) = O(log n). The runtime for
each level of the tree is proportional to the current length of the subarray, which

is O(c'") at the ith level from the smallest case. Therefore the total runtime is

O(log n)

; O(nc) = 1%Cc)(n) — o(n).

3. Say it takes f(n) splits to cut the size of the array in half, where f(n) = w(1).
The runtime at each of these splits before reaching half the original array size is
at least n/2. Therefore the total runtime is at least f(n) - n/2 = w(n).

	Divide and Conquer
	Finding a fixed point of an array
	Maximum sum subarray

	Space Complexity
	Recurrence Relations
	Select algorithm

