
CS 161 (Stanford, Winter 2025) Section 5

1 Pattern Matching with a Rolling Hash

In the Pattern Matching problem, the input is a text string T of length n and a pattern string
P of length m < n. Our goal is to determine if the text has a (consecutive) substring1 that
is exactly equal to the pattern (i.e. T [i . . . i +m − 1] = P for some i).

1. Design a simple O(mn)-time algorithm for this problem that doesn’t use any hashing.

2. Can we find a more efficient algorithm using hash functions? One naive way to do this
is to hash P and every length-m substring of T . Assume that we have access to a hash
function for hashing individual characters. What is the running time of this solution?

3. Suppose that we had a universal hash family Hm for length-m strings, where each
hm ∈ Hm the sum of hashes of characters in the string:

hm(s) = h(S[0]) + · · ·+ h(S[m − 1]). (1)

Explain how you would use this hash family to solve the pattern matching problem in
O(n) time.

Hint: the idea is to improve over your naive algorithm by reusing your work.

4. Unfortunately, a family of “additive” functions like the one in the previous item cannot
be universal. Prove it.

5. The trick is to have a hash function that looks almost like (1): the hash function
treats each character of the string is a little differently to circumvent the issue you
discovered in the previous part, but they’re still related enough that we can use our
work. Specifically, we will consider hash functions parameterized by a fixed large prime
p, and a random number x from 1, . . . , p − 1:

hx(S) =

m−1∑
i=0

S[i ] · x i (mod p).

For fixed pair of strings S 6= S′, the probability over random choice of x that the hashes
are equal is at most m/p, i.e.

Pr[hx(S) = hx(S
′)] ≤ m/p.

(This follows from the fact that a polynomial of degree (m − 1) can have at most m
zeros. Do you see why?)

1In general, subsequences are not assumed to be consecutive, but a substring is defined as a consecutive
subsequence.

1



Design a randomized algorithm for solving the pattern matching problem. The algorithm
should have worst-case run-time O(n), but may return the wrong answer with small
probability (e.g. < 1/n). (Assume that addition, subtraction, multiplication, and
division modulo p can be done in O(1) time.)

6. How would you change your algorithm so that it runs in expected time O(n), but always
return the correct answer?

7. Suppose that we had one fixed text T and many patterns P1, . . . Pk that we want to
search in T . How would you extend your algorithm to this setting?

2 Hash Tables with Linear Probing

In this problem, we will explore linear probing. Suppose we have a hash table H with n buckets,
universe U = {1, 2, . . . , n}, and a uniformly random hash functions h : U → {1, 2, . . . , n}.

When an element u arrives, we first try to insert into bucket h(u). If this bucket is occupied,
we try to insert into h(u) + 1, then h(u) + 2, and so on (wrapping around after n). If all
buckets are occupied, output Fail and don’t add u anywhere. If we ever find u while doing
linear probing, do nothing.

Throughout, suppose that there are m ≤ n distinct elements from U being inserted into H.
Furthermore, assume that h is chosen after all m elements are chosen (that is, an adversary
cannot use h to construct their sequence of inserts).

1. (Warmup) Can we ever output Fail while inserting these m elements?

2. Above, we gave an informal algorithm for inserting an element u. Your next task is to
give algorithms for searching and deleting an element u from the table.

Hint: Make sure that your search and delete algorithms work together - specifically,
what should happen when you search after deleting an item?

3. In this part, we will analyze the expected runtime of linear probing assuming that
m = n1/3 and that no deletions occur.

(a) Give an upper bound on the probability that h(u) = h(v) for some u, v that are a
part of these first m elements, assuming that m = n1/3.

Hint: You may need that P[at least one of E1, . . . , Ek happens] ≤
∑
i∈[k]P[Ei ]

given any random events E1, . . . , Ek .

(b) When inserting an element, define the number of probes it does as the number of
buckets it has to check, including the first empty bucket it looks at. For example,
if h(u), . . . , h(u) + 2 were occupied but h(u) + 3 was not then we would have to
check 4 buckets.

Prove that the expected number of total probes done when inserting m = n1/3

elements is O(m).

2



Hint: Consider using the law of total expectation with two cases: when there are
no collisions, and when there is at least one collision.

3 True or False

1. If (u, v) is an edge in an undirected graph and during DFS, f inish(v) < f inish(u),
then u is an ancestor of v in the DFS tree.

2. In a directed graph, if there is a path from u to v and start(u) < start(v) then u is
an ancestor of v in the DFS tree.

3. In an undirected graph, if (u, v) is an edge and u is marked as visited before v during
BFS, then u must be closer to the starting node s than v .

4 Matryoshka Dolls

You have n matryoshka dolls. The i-th doll has dimensions wi × hi . Doll i can fit inside doll
j iff wi < wj and hi < hj . A sequence of dolls b1, b2, ..., bk form a chain if doll bi fits inside
doll bi+1 for each 1 ≤ i < k . Design an algorithm which takes as input a list of dimensions
wi × hi and returns a longest possible chain of dolls. You must construct a directed graph as
part of your solution.

5 Bipartite Graphs

A Bipartite Graph is a graph whose vertices can be divided into two independent sets, U
and V such that every edge (u, v) connects a vertex from U to V or a vertex from V to
U. A bipartite graph is possible if the graph coloring is possible using two colors such that
vertices in a set are colored with the same color. In lecture, we saw an algorithm using BFS
to determine where a graph is bipartite.

Design an algorithm using DFS to determine whether or not an undirected graph is bipartite.

3


	Pattern Matching with a Rolling Hash
	Hash Tables with Linear Probing
	True or False
	Matryoshka Dolls
	Bipartite Graphs

