

1 Pattern Matching with a Rolling Hash

In the Pattern Matching problem, the input is a *text* string T of length n and a *pattern* string P of length $m < n$. Our goal is to determine if the text has a (consecutive) substring¹ that is exactly equal to the pattern (i.e. $T[i \dots i + m - 1] = P$ for some i).

1. Design a simple $O(mn)$ -time algorithm for this problem that doesn't use any hashing.
2. Can we find a more efficient algorithm using hash functions? One naive way to do this is to hash P and every length- m substring of T . Assume that we have access to a hash function for hashing individual characters. What is the running time of this solution?
3. Suppose that we had a universal hash family H_m for length- m strings, where each $h_m \in H_m$ the sum of hashes of characters in the string:

$$h_m(S) = h(S[0]) + \dots + h(S[m-1]). \quad (1)$$

Explain how you would use this hash family to solve the pattern matching problem in $O(n)$ time.

*Hint: the idea is to improve over your naive algorithm by **reusing your work**.*

4. Unfortunately, a family of “additive” functions like the one in the previous item cannot be universal. Prove it.
5. The trick is to have a hash function that looks almost like (1): the hash function treats each character of the string a little differently to circumvent the issue you discovered in the previous part, but they’re still related enough that we can use our work. Specifically, we will consider hash functions parameterized by a fixed large prime p , and a random number x from $1, \dots, p-1$:

$$h_x(S) = \sum_{i=0}^{m-1} S[i] \cdot x^i \pmod{p}.$$

For fixed pair of strings $S \neq S'$, the probability over random choice of x that the hashes are equal is at most m/p , i.e.

$$\Pr[h_x(S) = h_x(S')] \leq m/p.$$

(This follows from the fact that a polynomial of degree $(m-1)$ can have at most m zeros. Do you see why?)

¹In general, *subsequences* are not assumed to be consecutive, but a *substring* is defined as a consecutive subsequence.

Design a randomized algorithm for solving the pattern matching problem. The algorithm should have worst-case run-time $O(n)$, but may return the wrong answer with small probability (e.g. $< 1/n$). (Assume that addition, subtraction, multiplication, and division modulo p can be done in $O(1)$ time.)

6. How would you change your algorithm so that it runs in *expected* time $O(n)$, but always return the correct answer?
7. Suppose that we had one fixed text T and many patterns P_1, \dots, P_k that we want to search in T . How would you extend your algorithm to this setting?

2 Hash Tables with Linear Probing

In this problem, we will explore *linear probing*. Suppose we have a hash table H with n buckets, universe $U = \{1, 2, \dots, n\}$, and a *uniformly random* hash functions $h : U \rightarrow \{1, 2, \dots, n\}$.

When an element u arrives, we first try to insert into bucket $h(u)$. If this bucket is occupied, we try to insert into $h(u) + 1$, then $h(u) + 2$, and so on (wrapping around after n). If all buckets are occupied, output **Fail** and don't add u anywhere. If we ever find u while doing linear probing, do nothing.

Throughout, suppose that there are $m \leq n$ distinct elements from U being inserted into H . Furthermore, assume that h is chosen *after* all m elements are chosen (that is, an adversary cannot use h to construct their sequence of inserts).

1. (Warmup) Can we ever output **Fail** while inserting these m elements?
2. Above, we gave an informal algorithm for inserting an element u . Your next task is to give algorithms for searching and deleting an element u from the table.

Hint: Make sure that your search and delete algorithms work together - specifically, what should happen when you search after deleting an item?

3. In this part, we will analyze the expected runtime of linear probing assuming that $m = n^{1/3}$ and that no deletions occur.
 - (a) Give an upper bound on the probability that $h(u) = h(v)$ for some u, v that are a part of these first m elements, assuming that $m = n^{1/3}$.

Hint: You may need that $\mathbf{P}[\text{at least one of } E_1, \dots, E_k \text{ happens}] \leq \sum_{i \in [k]} \mathbf{P}[E_i]$ given any random events E_1, \dots, E_k .

- (b) When inserting an element, define the number of *probes* it does as the number of buckets it has to check, including the first empty bucket it looks at. For example, if $h(u), \dots, h(u) + 2$ were occupied but $h(u) + 3$ was not then we would have to check 4 buckets.

Prove that the expected number of total probes done when inserting $m = n^{1/3}$ elements is $O(m)$.

Hint: Consider using the law of total expectation with two cases: when there are no collisions, and when there is at least one collision.

3 True or False

1. If (u, v) is an edge in an undirected graph and during DFS, $finish(v) < finish(u)$, then u is an ancestor of v in the DFS tree.
2. In a directed graph, if there is a path from u to v and $start(u) < start(v)$ then u is an ancestor of v in the DFS tree.
3. In an undirected graph, if (u, v) is an edge and u is marked as visited before v during BFS, then u must be closer to the starting node s than v .

4 Matryoshka Dolls

You have n matryoshka dolls. The i -th doll has dimensions $w_i \times h_i$. Doll i can fit inside doll j iff $w_i < w_j$ and $h_i < h_j$. A sequence of dolls b_1, b_2, \dots, b_k form a chain if doll b_i fits inside doll b_{i+1} for each $1 \leq i < k$. Design an algorithm which takes as input a list of dimensions $w_i \times h_i$ and returns a longest possible chain of dolls. You must construct a directed graph as part of your solution.

5 Bipartite Graphs

A Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and V such that every edge (u, v) connects a vertex from U to V or a vertex from V to U . A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set are colored with the same color. In lecture, we saw an algorithm using BFS to determine where a graph is bipartite.

Design an algorithm using DFS to determine whether or not an undirected graph is bipartite.