
CS 161 (Stanford, Winter 2025) Section 5

1 Pattern Matching with a Rolling Hash

In the Pattern Matching problem, the input is a text string T of length n and a pattern string
P of length m < n. Our goal is to determine if the text has a (consecutive) substring1 that
is exactly equal to the pattern (i.e. T [i . . . i +m − 1] = P for some i).

1. Design a simple O(mn)-time algorithm for this problem that doesn’t use any hashing.

Solution

Compare P to each length m substring of T starting from index 0 to n − m.
Return true if any substring matches exactly, and false otherwise.
This algorithm iterates through O(n) substrings of T , and each check against P
takes O(m), making the algorithm O(mn).

2. Can we find a more efficient algorithm using hash functions? One naive way to do this
is to hash P and every length-m substring of T . Assume that we have access to a hash
function for hashing individual characters. What is the running time of this solution?

Solution

Hashing every length-m substring of T takes O(m) for each substring, with a
total of O(n) substrings. This overall is still O(mn).

3. Suppose that we had a universal hash family Hm for length-m strings, where each
hm ∈ Hm the sum of hashes of characters in the string:

hm(s) = h(S[0]) + · · ·+ h(S[m − 1]). (1)

Explain how you would use this hash family to solve the pattern matching problem in
O(n) time.

Hint: the idea is to improve over your naive algorithm by reusing your work.

Solution

Each time we hash the next substring, subtract the hash of the character that
was removed and add the hash of the character that was added. This takes O(1)
for each substring, so the overall runtime becomes O(n).

1In general, subsequences are not assumed to be consecutive, but a substring is defined as a consecutive
subsequence.

1

4. Unfortunately, a family of “additive” functions like the one in the previous item cannot
be universal. Prove it.

Solution

Consider a 2 character string S, and another 2 character string S′ with the
characters of S in reverse order. For any hm ∈ Hm we have P (hm(S) = hm(S′)) =
1 and S′ 6= S.

5. The trick is to have a hash function that looks almost like (1): the hash function
treats each character of the string is a little differently to circumvent the issue you
discovered in the previous part, but they’re still related enough that we can use our
work. Specifically, we will consider hash functions parameterized by a fixed large prime
p, and a random number x from 1, . . . , p − 1:

hx(S) =

m−1∑
i=0

S[i] · x i (mod p).

For fixed pair of strings S 6= S′, the probability over random choice of x that the hashes
are equal is at most m/p, i.e.

Pr[hx(S) = hx(S
′)] ≤ m/p.

(This follows from the fact that a polynomial of degree (m − 1) can have at most m
zeros. Do you see why?)

Design a randomized algorithm for solving the pattern matching problem. The algorithm
should have worst-case run-time O(n), but may return the wrong answer with small
probability (e.g. < 1/n). (Assume that addition, subtraction, multiplication, and
division modulo p can be done in O(1) time.)

Solution

Our algorithm uses the same idea from part 3, but applies this polynomial rolling
hash function instead. The key insight is that if we have hx(T [k . . . k +m − 1])
then we have

hx(T [k+1 . . . k+m]) = (hx(T [k . . . k+m−1])−T [k])/x+T [k+m]·xm−1 (mod p)

2

Algorithm 1: PatternMatch(T , P)
ph ← hx(p)
for all substrings sk ∈ T do

if k = 0 then
hash ← hx(sk)

else
hash ← (hash − sk−1[0])/x + sk [m] · xm−1

if hash = ph then
return True

return False
Runtime: Computing the hash for a substring from scratch takes O(m) time.
However, we compute the entire hash only for P and the first substring of T .
Remaining hashes requires computing xm, but we can precompute and store this
value. This makes computing hash for each subsequent substring O(1), making
the algorithm O(n).

6. How would you change your algorithm so that it runs in expected time O(n), but always
return the correct answer?

Solution

Modify the algorithm so that whenever the hashes match, before returning “True”
it also checks that the pattern P actually matches to the substring (and if not
continue the loop).
Checking takes O(m) time, and in expectation we would only have to check
O(n · m/p) times. (That’s O(n) hash comparisons × probability m/p of false
positive each hash comparison). When p = Ω(n ·m), that’s O(1) checks.

7. Suppose that we had one fixed text T and many patterns P1, . . . Pk that we want to
search in T . How would you extend your algorithm to this setting?

Solution

We can extend our algorithm simply by hashing each of P1, . . . , Pk and checking
the hash of each substring against this set of hashes.

2 Hash Tables with Linear Probing

In this problem, we will explore linear probing. Suppose we have a hash table H with n buckets,
universe U = {1, 2, . . . , n}, and a uniformly random hash functions h : U → {1, 2, . . . , n}.

When an element u arrives, we first try to insert into bucket h(u). If this bucket is occupied,
we try to insert into h(u) + 1, then h(u) + 2, and so on (wrapping around after n). If all

3

buckets are occupied, output Fail and don’t add u anywhere. If we ever find u while doing
linear probing, do nothing.

Throughout, suppose that there are m ≤ n distinct elements from U being inserted into H.
Furthermore, assume that h is chosen after all m elements are chosen (that is, an adversary
cannot use h to construct their sequence of inserts).

1. (Warmup) Can we ever output Fail while inserting these m elements?

Solution

No, as there are n spots in the table.

2. Above, we gave an informal algorithm for inserting an element u. Your next task is to
give algorithms for searching and deleting an element u from the table.

Hint: Make sure that your search and delete algorithms work together - specifically,
what should happen when you search after deleting an item?

Solution

When deleting, we should take special care that a previously occupied bucket
is still marked as “previously occupied”. Here’s why: suppose n = 3 and h(0) =
0, h(1) = 1, h(2) = 0. Suppose elements were inserted in the order 0, 1, 2. Then,
H = [0, 1, 2]. What happens if we delete 1 and then search for 2? Well, after
deleting 1, H = [0,�, 2] and so naively searching for 2 would return false, as the
spot after 0 is empty.
To get around this, we mark such deletions with a “tombstone” value so that
search treats those as elements.
def Search(H, u):

start = h(u)
if H[start] == u:

return True
current = start + 1
while current != start:

if H[current] == u:
return True

elif H[current] == empty: # X is not empty!
return False

current = current % n + 1 #adds 1 mod n

def Delete(H, u):
start = h(u)
if H[start] == u:

H[start] = X (tombstone)
return

4

current = start + 1
while current != start:

if H[current] == u:
H[current] = X
return

elif H[current] == empty:
return # u is not in H

current = current % n + 1 #adds 1 mod n

3. In this part, we will analyze the expected runtime of linear probing assuming that
m = n1/3 and that no deletions occur.

(a) Give an upper bound on the probability that h(u) = h(v) for some u, v that are a
part of these first m elements, assuming that m = n1/3.

Hint: You may need that P[at least one of E1, . . . , Ek happens] ≤
∑
i∈[k]P[Ei]

given any random events E1, . . . , Ek .

Solution

Number the elements u1, u2, . . . , um. The probability that any pair of ele-
ments collide with each other is 1

n
, and hence, by union bound over all pos-

sible pairs, an upper bound on the probability of any collision is m
2

n
= n−1/3.

(b) When inserting an element, define the number of probes it does as the number of
buckets it has to check, including the first empty bucket it looks at. For example,
if h(u), . . . , h(u) + 2 were occupied but h(u) + 3 was not then we would have to
check 4 buckets.

Prove that the expected number of total probes done when inserting m = n1/3

elements is O(m).
Hint: Consider using the law of total expectation with two cases: when there are
no collisions, and when there is at least one collision.

Solution

Let X be a random variable corresponding to the number of total probes
done, and notice that X ≤ m2 (each inserted element can only be compared
against the other inserted elements’ positions, so we have m elements with
≤ m probes each).
Furthermore, let E be the event that there is at least one collision. Then,
by conditional expectation:

E[X] = E[X | E]P[E]+E[X | E]P[E] ≤ E[X | E] ·
m2

n
+E[X | E] ≤

m4

n
+E[X | E]

We upperbounded the probability of E by m
2

n
and the probability of E (the

5

complement of E) by 1, since probabilities are always ≤ 1. Then, we applied
E[X | E] ≤ m2. Finally, if there are no collisions, the total number of probes
done is m: we only have to check one bucket per insertion. Hence, overall
we have E[X] ≤ m4

n
+m = 2m = O(m) (remembering that n = m3).

3 True or False

1. If (u, v) is an edge in an undirected graph and during DFS, f inish(v) < f inish(u),
then u is an ancestor of v in the DFS tree.

Solution

True. When we do DFS, we store “Visited” nodes in a stack to keep track of
the order in which they were visited. Stacks, by nature, have a “last-in first-
out” order, meaning the last node you added into the stack will be popped out
before any of the nodes before it. Thus, we have a scenario where u was visited,
then v was visited, then v was popped, then u was popped. This makes u an
ancestor of v . The only other scenario is if v was both visited and popped before
u was visited and popped. However, since there is an edge between u and v ,
this scenario would never happen in DFS since you explore all neighbors before
popping yourself.

2. In a directed graph, if there is a path from u to v and start(u) < start(v) then u is
an ancestor of v in the DFS tree.

Solution

False. Consider the following case:

u32 w 61 v 54

3. In an undirected graph, if (u, v) is an edge and u is marked as visited before v during
BFS, then u must be closer to the starting node s than v .

Solution

False.
The order of node discovery in BFS depends on the queue processing, and marking
an adjacent node as visited does not necessarily imply its distance from the start
node. Consider the following case:

6

s u

v

4 Matryoshka Dolls

You have n matryoshka dolls. The i-th doll has dimensions wi × hi . Doll i can fit inside doll
j iff wi < wj and hi < hj . A sequence of dolls b1, b2, ..., bk form a chain if doll bi fits inside
doll bi+1 for each 1 ≤ i < k . Design an algorithm which takes as input a list of dimensions
wi × hi and returns a longest possible chain of dolls. You must construct a directed graph as
part of your solution.

Solution

Construct a directed graph whose vertices are dolls, and such that there is an edge
(vi , vj) iff doll vi fits inside doll vj . Notice that this graph is a DAG (you can only go
one direction between dolls). Our goal is now to find the longest path.
Linearize (topologically sort) the graph, so whenever there is an edge from vj to vi ,
j < i .
For every node vi , let `i be the length of the longest path ending at vi . We can compute
`i as follows:

`i = 1 + max
(vj ,vi)∈E

`j

Because we have linearized the graph, `i depends only on `j for j < i . So we can
compute the `i values in order.
The answer is maxni=1 `i .

5 Bipartite Graphs

A Bipartite Graph is a graph whose vertices can be divided into two independent sets, U
and V such that every edge (u, v) connects a vertex from U to V or a vertex from V to
U. A bipartite graph is possible if the graph coloring is possible using two colors such that
vertices in a set are colored with the same color. In lecture, we saw an algorithm using BFS
to determine where a graph is bipartite.

Design an algorithm using DFS to determine whether or not an undirected graph is bipartite.

7

Solution

The algorithm is essentially the same as that of BFS, except at every node we visit,
we either color it if it hasn’t been visited before, or check its color if it has been visited
before. The rough algorithm is as follows:

1. Start DFS from any node and color it RED
2. Color the next node BLUE
3. Continue coloring each successive node the opposite color until the end of the

tree is reached
4. If at any point a current node is the same color as one of its neighbors, then

return false
5. Once every node has been visited, if we haven’t returned false, then the graph is

bipartite

8

	Pattern Matching with a Rolling Hash
	Hash Tables with Linear Probing
	True or False
	Matryoshka Dolls
	Bipartite Graphs

