CS 161 (Stanford, Winter 2026) Lecture 11

Adapted from Virginia Williams's lecture notes. Additional credits go to Himanshu Bhandoh,
Anthony Kim, Greg Valiant, Mary Wootters, and Aviad Rubinstein.
Please direct all typos and mistakes to Ellen Vitercik and Moses Charikar.

Dijkstra and Bellman-Ford

1 Dijkstra’s Algorithm

Now we will solve the single source shortest paths problem in graphs with nonnengative weights
using Dijkstra’s algorithm. The key idea, that Dijkstra will maintain as an invariant, is that
YVt € V, the algorithm computes an estimate d[t] of the distance of t from the source such
that:

1. At any point in time, d[t] > d(s, t), and
2. when t is finished, d[t] = d(s, t).

Algorithm 1: Dijkstra(G = (V, E), s)

Vt € V,d[t] < oo // set initial distance estimates

d[s] + 0

F <« {v|VYveV} // Fisset of nodes that are yet to achieve final distance estimates
D <« 0 // D will be set of nodes that have achieved final distance estimates

while F # () do
x < element in £ with minimum distance estimate

for (x,y) € E do
dly] <= min{d[y], d[x] + w(x,y)} // “relax" the estimate of y
L // to maintain paths: if d[y] changes, then m(y) < x
F«+ F\ {x}
| D+ DU{x}

We will prove that Dijkstra correctly computes the distances from s to all t € V.
Claim 1. For every u, at any point of time d[u] > d(s, u).

A formal proof of this claim proceeds by induction. In particular, one shows that at any point
in time, if d[u] < oo, then d[u] is the weight of some path from s to t. Thus at any point
d[u] is at least the weight of the shortest path, and hence d[u] > d(s, u).

As a base case, we know that d[s] = 0 = d(s, s) and all other distance estimates are +o0,
so we know that the claim holds initially. Now, when d[u] is changed to d[x] + w(x, u) then
(by the induction hypothesis) there is a path from s to x of weight d[x] and an edge (x, v)
of weight w(x, u). This means there is a path from s to u of weight d[u] = d[x] + w(x, u).
This implies that d[u] is at least the weight of the shortest path = d(s, u), and the induction



argument is complete.

Claim 2. When node x is placed in D, d[x] = d(s, x).

Notice that proving the above claim is sufficient to prove the correctness of the algorithm
since d[x] is never changed again after x is added to D: the only way it could be changed
is if for some node y € F, d[y] + w(y, x) < d[x] but this can't happen since d[x] < d[y]
and w(y, x) > 0 (all edge weights are nonnegative). The assertion d[x] < d[y] for all y € F
stays true at all points after x is inserted into D: assume for contradiction that at some point
for some y € F we get d[y] < d[x] and let y be the first such y. Before d[y] was updated
d[y’] > d[x] for all y’ € F. But then when d[y] was changed, it was due to some neighbor y’
of y in F, but d[y’] > d[x] and all weights are nonnegative, so we get a contradiction

We prove this claim by induction on the order of placement of nodes into D. For the base
case, s is placed into D where d[s] = d(s,s) = 0, so initially, the claim holds.

For the inductive step, we assume that for all nodes y currently in D, d[y] = d(s,y). Let x be
the node that currently has the minimum distance estimate in F (this is the node about to be
moved from F to D). We will show that d[x] = d(s, x) and this will complete the induction.

Let p be a shortest path from s to x. Suppose z is the node on p closest to x for which
d[z] = d(s,z). We know z exists since there is at least one such node, namely s, where
d[s] = d(s,s). By the choice of z, for every node y on p between z (not inclusive) to x
(inclusive), d[y] > d(s,y). Consider the following options for z.

1. If z=x, then d[x] = d(s, x) and we are done.

2. Suppose z # x. Then there is a node Z' after z on p. (Here it is possible that z’ = x.)
We know that d[z] = d(s,z) < d(s,x) < d[x]. The first < inequality holds because
subpaths of shortest paths are shortest paths as well, so that the prefix of p from
s to z has weight d(s,z). In addition, the weights on edges are non-negative, so
that the portion of p from z to x has a nonnegative weight, and so d(s, z) < d(s, x).
The subsequent < holds by Claim 1. We know that if d[z] = d[x] all of the previous
inequalities are equalities and d[x] = d(s, x) and the claim holds.

Finally, towards a contradiction, suppose d[z] < d[x]. By the choice of x € F we
know d[x] is the minimum distance estimate that was in F. Thus, since d[z] < d[x],
we know z € F and must be in D, the finished set. This means the edges out of z,
and in particular (z, Z’), were already relaxed by our algorithm. But this means that
d[Z] < d(s,z) + w(z,Z') = d(s,Z'), because z is on the shortest path from s to Z/,
and the distance estimate of z’ must be correct. However, this contradicts z being the
closest node on p to x meeting the criteria d[z] = d(s, z). Thus, our initial assumption
that d[z] < d[x] must be false and d[x] must equal d(s, x).



1.1 Implementation of Dijkstra’s Algorithm

Consider implementing Dijkstra’s algorithm with a priority queue to store the set F, where
the distance estimates are the keys. The initialization step takes O(n) operations to set n
distance estimate values to infinity and 0. In each iteration of the while loop, we make a call
to find the node x in F with the minimum distance estimate (via, say, FindMin operation).
Then, we relax each edge leaving x (via DecreaseKey). We remove node x (via DeleteMin)
and add it to D. In total, there are n calls to FindMin and n calls to DeleteMin since nodes
are never re-inserted into F. Similarly, there will be m calls to DecreaseKey to relax the
edges since each edge will be relaxed at most once.

Depending on how quickly our priority queue can support FindMin, DeleteMin, and DecreaseKey
operations, the total runtime of Dijkstra’s algorithm is on the order of

n- (TFindMin(n) + TDeleteMin(n)) +m-: TDecreaseKey(n)-

We consider the following implementations of the priority queue for storing F:

e Store F as an array:
Each slot corresponds to a node and stores the distance d[j] if j € F, or NIL otherwise.
DecreaseKey runs in O(1) as nodes are indexed. FindMin and DeleteMin run in O(n)
as the array is not sorted and we have to go through the whole array. The total runtime
is O(m+ n?) = O(n?).

e Store F as a red-black tree:
All operations run in O(logn) time. We implement DecreaseKey by deleting and
re-inserting with the new key. The total runtime is O((m + n)logn). If graph G is
sparse with few edges, then the red-black tree implementation is faster than the array
implementation. However, it can be slower when G is dense with m = ©(n?).

e Store F as a Fibonacci heap:
Fibonacci heaps are a complex data structure which is able to support the operations
Insert in O(1), FindMin in O(1), DecreaseKey in O(1) and DeleteMin in O(log n)
“amortized” time, over a sequence of calls to these operations. The meaning of amortized
time in this case is as follows: starting from an empty Fibonacci heap, any sequence of
operations that includes a Insert’s, b FindMin's, ¢ DecreaseKey's and d DeleteMin's
take O(a+ b+ c + dlog n) time. The total runtime is O(m + nlog n).

To conclude, Dijkstra’s algorithm can be very fast when implemented the right way! However,
it has a few drawbacks:

e |t doesn't work with negative edge weights: we used the fact that the weights were
non-negative a few times in the correctness proof above.

e [t's not very amenable to frequent updates. Suppose that you had already run Dijkstra’s
algorithm from a particular point, but one weight in the graph changed. How would you
recover from this? Next time, we'll see the Bellman-Ford algorithm, which can be better
on both of these fronts.



2 Negative Edge Weights

Note that Dijkstra’s algorithm solves the single source shortest paths problem when there
are no edges with negative weights. While Dijkstra’s algorithm may fail on certain graphs
with negative edge weights, having a negative cycle (i.e., a cycle in the graph for which the
sum of edge weights is negative) is a bigger problem for any shortest path algorithm. When
computing a shortest path between two vertices, each additional traversal along the cycle
lowers the overall cost incurred and an arbitrarily small distance can be reached after looping
around the cycle multiple times. In this case, the shortest path to a node on the cycle is not
well defined since it is (negatively) infinite.

Figure 1: Assume there is a negative cycle along the s — t path. The distance between s and
t is not well-defined.

For example, consider the graph in Figure 1. The shortest path from s to t would start from
the node s, loop around the negative cycle an infinite number of times and eventually reach
destination t. The shortest path would, hence, be of infinite length and is not well-defined.

Besides the negative cycles, there are no problems in computing the shortest paths in a graph
with negative edge weights. In fact, there are many applications where allowing negative edge
weights is important.

3 Bellman-Ford Algorithm

In this section, we study the Bellman-Ford algorithm that solves the single source shortest
paths problem on graphs with edges with potentially negative weights. Given a directed graph
G = (V, E) with edge weights given by w(x,y) for (x,y) € E, we want to compute the
shortest path distances d(s, v) from source s for all v € V. More specifically, the Bellman-Ford
algorithm:

e Detects a negative cycle if it exists and is reachable from s, or
e Computes the shortest path distances d(s, v) for all v € V.

Note 7r(+) is used to store the shortest paths found and w(v) represents the predecessor of v
on the shortest path from s to v.

NOTE: This version of Bellman-Ford is a bit different than the one we presented in class!
As mentioned in class, we changed it up slightly to be more in line with the next lecture on



Algorithm 2: Bellman-Ford Algorithm
d[v] < o0,Vv € V // set initial distance estimates
// to maintain paths: set m(v) <—nil for all v, w(v) represents the predecessor of v
d[s] < 0 // set distance to start node trivially as 0
for i from1 — n—1do
for (u,v) € E do
d[v] - min{d[v], d[u] + w(u, v)} // update the distance estimate for v
L // to maintain paths - if d[v] changes, then m(v) < u

/ Negative Cycle Step
or (u,v) € E do
if d[v] > d[u] + w(u, v) then
| return “Negative Cycle"; // negative cycle detected

-~

return dlv]VveV

Dynamic Programming. However, the analysis is basically the same. We'll analyze the above
version here.

For an example run of the Bellman-Ford algorithm, please refer to the lecture slides or CLRS.

The total runtime of the Bellman-Ford algorithm is O(mn). In the first for loop, we repeatedly
update the distance estimates n — 1 times on all m edges in time O(mn). In the second for
loop, we go through all m edges to check for negative cycles in time of O(m).

We prove the correctness of the Bellman-Ford algorithm in two steps:

Claim 3. /f there is a negative cycle reachable from s, then the Bellman-Ford algorithm
detects and reports “Negative Cycles”.

Proof. For the sake of contradiction, suppose there exists a negative cycle C reachable from the
source s and the Bellman-Ford algorithm does not report “Negative Cycles”. Assume C contains
nodes vq, Vs, . . ., vk with edges (v, vii1) fori=1,..., k such that Zf'(:l w(Vv;, vip1) < 0, where
Vkr1 = V1. See Figure 2. Let d[-] be the distance estimates determined in the first for loop of
the algorithm.

Since C is reachable from s, there is a path from s to v; and to all nodes on C. In particular,
there exist simple paths, i.e., paths without cycles, of at most n — 1 edges to the nodes
of C. In the first for loop, the edges on each such simply path get relaxed in order and
consequently, d[v;] will be some finite number less than oo for i = 1,..., k. Since the
Bellman-Ford algorithm does not report “Negative Cycles” in the second for loop, it must be
that d[vii1] < d[vi] + w(v;, viyq) fori=1,..., k. Adding the inequalities, we obtain

Y dlvisal <) dvil+ Y w(vi i) -



2(3(7%‘,”#1) <0

Figure 2: A negative cycle reachable from source s

As we are summing over the cycle C, the terms 32X | d[vi11] and 32, d[v)] are equal and
can be cancelled. It follows that 0 < Zf.;l w(V;, viy1). This contradicts that C is a negative
cycle.

[]

In the next claim, we show that if the graph has no negative cycles reachable from the source,
then the Bellman-Ford algorithm returns the correct shortest path distances.

Claim 4. /f G has no negative cycles reachable from s, then d[v] = d(s,v),Vv € V.

Proof. Let di(v) be the value of d[v] after k iterations of the first for loop. We prove by
induction the statement that dx(v) is at most the minimum distance of a path from s to v
with at most k edges. Then, we will have d,_1(v) = d[v] for all node v at termination. We'll
argue below that if there is any path from s to v, then there is some shortest path with at
most n — 1 edges, so this means

dist(s, v) < d[v] = d,—1(v) < minimum cost of a path with at most n — 1 edges = dist(s, v).

Thus, everything in the above inequality chain is equal, and in particular d[v] is equal to the
distance from s to v. Above, we used the fact that d[v] is an over-estimate on dist(s, v),
which follows from our analysis of Dijkstra’s algorithm.

We now argue that if there is a path from s to v, then there exists a shortest path from s to
v has at most n — 1 edges. If a shortest path has a cycle, the cycle cannot be negative and
we can remove it and improve its total distance. If the cycle has a positive weight, removing
the cycle will strictly improve the shortest path’s distance. If the cycle has zero weight, we
can ignore the cycle. Hence, we can assume that shortest paths are simple, that is, do not
have cycles.

Base Case: When k = 0, the distance estimates have been just initialized. So, dy(v) = o0
if v # s. Furthermore, dy(s) = 0 = d(s, s), which is the minimum distance of length-0 paths
from s to s. The statement is satisfied for the base case.

Inductive Step: Assume that dx_;(v) is at most the minimum distance of a s — v path
on at most k — 1 edges for all v.

Consider v # s. Let P be a shortest simple s — v path on at most k edges. Let u be the
node just before v on P, and let Q be the sub-path of P from s to u. The path Q would



have at most k — 1 edges and is a shortest path from s to v with at most kK — 1 edges, since
sub-paths of shortest paths are also shortest paths. By the inductive hypothesis, Q@ has cost
at most dyx_1(u).

In the k-th iteration, we update dx(v) such that di(v) < di_1(u) + w(u,v) < w(Q) +
w(u,v) = w(P).

The induction is complete, and the claim is proved. [

4 Amortized Time

Let's return to the Fibonacci heaps that we only very briefly mentioned above.

Note the runtimes listed for the operations of Fibonacci heaps are not worst-case runtimes.
Instead, they are, what we call amortized runtimes. We say an operation on a data structure
takes amortized t(n) time if starting from an empty data structure, performing the operation
L times takes O(L x t(n)) time in total. This means the runtime of the operation is O(t(n))
when averaged over the sequence of L instances of the operation. Each individual operation
call may take much more than t(n) time, but this is compensated by many cheap operation
calls (that take much less than t(n) time).

We analyze the amortized cost of incrementing a binary counter by one when the count is
represented in binary. Consider a b-bit counter which starts at 0 (i.e. b 0's). In each increment
operation, we update the counter’s bits correspondingly by flipping some bits from 0 to 1, or
vice versa.

Some of the increment operations may take €2(b) time. For example, an increment operation
can require carrying b bits:

11111111
+1
= 100000000

Other increment operations can take O(1) time:

10000000
+1
= 10000001

All this said, we can show the amortized cost of the increment operation on a binary counter
is O(1). Even though some increments take time linear in the number of bits, if we do n
increment operations to the counter starting from the all Os, each operation takes O(1) time
on average.

Claim 5. The total time to increment a binary counter n times is O(n).

-



We use what is known as the accounting method to prove this claim. Each nonzero bit in the
binary counter will get a “credit” obtained from earlier increment operations that will then be
used to pay for later expensive operations. More specifically, we will maintain the invariant
that every 1 in the binary representation has a “credit", which we represent as @, associated
with it.

Let x be the binary counter. If we start with an “empty" integer — that is 0 — then clearly all
1's have a credit as there are no 1's. Assume that all the 1's of x have a credit at the start of
an increment operation. In each increment operation, we know the first addition will require
constant work for which the addition operation will be charged with. We actually “charge"
the addition operation two credits, represented as @&®, to the new 1 to be added:

x = 191%0

+
1@@

Now we start adding. We will maintain the invariant that any “carry” bit will have two &
credits. For completeness, we'll call the original 1 to be added to x a “carry” as well.

Now, at each point we are adding a carry bit to a bit in x. If the carry bit is 0, we do nothing
and stop. If the carry bit to be added to the /-th bit is 1 and the j-th bit of x is 0 (Note /
starts at 0), then one of the & credits of the carry bit is used to store 1 in x[/] and the other
remains on this new 1 as &:

19190
+1%9
— 1@1@ 169

At this point, the carry for the / + 1-st slot is 0 and we can stop the addition.

When the carry bit to be added to the /-th bit is 1 and x[i] is 1, however, we will get a
non-zero carry bit for the / + 1-st position. In this case, we will use one & from the 1 stored
in x[/] to pay for storing a 0 in x[/] (doing the carry addition), and we'll move the two @®s of
the carry bit to the new carry bit for the / + 1-st position. This maintains the invariant that
all 1s in x have a credit and all carries have two credits.

For example, consider an increment operation on the binary counter x = 0111:

0191919
+199



A new carry bit is formed:
19@
=01%1%0
A new carry bit is formed:
190

= 01900

A new carry bit is formed:
16969

=0000
= 19000 ,

arriving at x = 1000.

All carry propagations of additions are for free because they are paid for by the credits
accumulated in previous additions of 0's and 1's. There are O(n) credits overall, two for
each increment operation. Thus, the total runtime is O(n). The credit system allows you
to pay for later long operations by depositing credits from previous short operations. Some
operations are long, but over all n increment operations, the total work is O(n). It follows
that the increment operation takes amortized O(1) time.



	Dijkstra's Algorithm
	Implementation of Dijkstra's Algorithm

	Negative Edge Weights
	Bellman-Ford Algorithm
	Amortized Time

