CS 161 (Stanford, Winter 2026) Lecture 14

Adapted from Virginia Williams' lecture notes. Additional credits go to Sam Kim and Mary
Wootters.
Please direct all typos and mistakes to Ellen Vitercik and Moses Charikar.

Greedy Algorithms

1 Greedy Algorithms

Suppose we want to solve a problem, and we're able to come up with some recursive formulation
of the problem that would give us a nice dynamic programming algorithm. But then, upon
further inspection, we notice that any optimal solution only depends on looking up the optimal
solution to one other subproblem. A greedy algorithm is an algorithm which exploits such a
structure, ignoring other possible choices. Greedy algorithms can be seen as a refinement of
dynamic programming; in order to prove that a greedy algorithm is correct, we must prove
that to compute an entry in our table, it is sufficient to consider at most one other table
entry; that is, at each point in the algorithm, we can make a “greedy”, locally-optimal choice,
and guarantee that a globally-optimal solution still exists. Instead of considering multiple
choices to solve a subproblem, greedy algorithms only consider a single subproblem, so they
run extremely quickly — generally, linear or close-to-linear in the problem size.

Unfortunately, greedy algorithms do not always give the optimal solution, but they frequently
give good (approximate) solutions. To give a correct greedy algorithm one must first identify
optimal substructure (as in dynamic programming), and then argue that at each step, you
only need to consider one subproblem. That is, even though there may be many possible
subproblems to recurse on, given our selection of subproblem, there is always an optimal
solution that contains the optimal solution to the selected subproblem.

1.1 Activity Selection Problem

One problem, which has a very nice (correct) greedy algorithm, is the Activity Selection
Problem. In this problem, we have a number of activities. Your goal is to choose a subset of
the activities to participate in. Each activity has a start time and end time, and you can't
participate in multiple activities at once. Thus, given n activities a;, a», ..., a, where a; has
start time s; and finish time f;, we want to find a maximum set of non-conflicting activities.

The activity selection problem has many applications, most notably in scheduling jobs to run
on a single machine.

1.1.1 Optimal Substructure

Let's start by considering a subset of the activities. In particular, we'll be interested in
considering the set of activities S;; that start after activity a; finishes and end before activity
aj starts. Thatis, S;j = {ax | fi < sk, fk <s;}. We can participate in these activities between
a; and a;. Let A;; be a maximum subset of non-conflicting activities from the subset S; ;.
Our first intuition would be to approach this by using dynamic programming. Suppose some
ax € Aij, then we can break down the optimal subsolution A;; as follows

|Aijl = 1+ [Ai k] + Akl

where A, is the best set for S, (before ax), and Ay, is the best set for after ax. Another
way of interpreting this expression is to say “once we place a, in our optimal set, we can only
consider optimal solutions to subproblems that do not conflict with a,.”

Thus, we can immediately come up with a recurrence that allows us to come up with a
dynamic programming algorithm to solve the problem.

|A,‘J| = max 1 + |A,‘,k| + ’Akj|
akGS;J

This problem requires us to fill in a table of size n?, so the dynamic programming algorithm
will run in Q(n?) time. The actual runtime is O(n®) since filling in a single entry might take
O(n) time.

But we can do better! We will show that we only need to consider the a, with the smallest
finishing time, which immediately allows us to search for the optimal activity selection in linear
time.

Proposition 1. For each S; j, there is an optimal solution A; j containing ax € S;; of minimum
finishing time fy.

Note that if the proposition is true, when fi is minimum, then A, x is empty, as no activities
can finish before ax; thus, our optimal solution only depends on one other subproblem Ay ;
(giving us a linear time algorithm).

Here, we prove the proposition.

Proof. Let a, be the activity of minimum finishing time in S; ;. Let A;; be some maximum
set of non-conflicting activities. Consider A} ; = A;; \ {a/} U {ax} where a, is the activity of
minimum finishing time in A; ;. It's clear that [A? | = |A;;|. We need to show that A]; does
not have conflicting activities. We know a, € A;j C S;;j. This implies f; > f, since a, has the
minimum finishing time in 5; ;.

All'a; € A;; \ {a/} don't conflict with a;, which means that s; > f;, which means that s; > f;,
so this means that no activity in A;; \ {a/} can conflict with a,. Thus, A}, is an optimal
solution. [l

Due to the above proposition, the expression for A;; from before simplifies to the following
expression in terms of a, C S; ;, the activity with minimum finishing time f;.
[Aijl =1+ Akl
A,’J = Ak’j U {ak}

Algorithm Greedy-AS assumes that the activities are presorted in nondecreasing order of their
finishing time, so that if 1 <, f; < f;.

Algorithm 1: Greedy-AS(a)
A<+ {a1} /* activity of min f; */
k<1
for m=2— ndo
if s,, > f, then

// am starts after last acitivity in A

A+ AUu{an}

k< m

return A

By the above claim, this algorithm will produce a legal, optimal solution via a greedy selection
of activities. There may be multiple optimal solutions, but there always exists a solution
that includes ax with the minimum finishing time. The algorithm does a single pass over
the activities, and thus only requires O(n) time — a dramatic improvement from the trivial
dynamic programming solution. If the algorithm also needed to sort the activities by f;, then
its runtime would be O(nlog n) which is still better than the original dynamic programming
solution.

1.2 Scheduling

Consider another problem that can be solved greedily. We are given n jobs which all need a
common resource. Let w; be the weight (or importance) and /; be the length (time required)
of job j. Our output is an ordering of jobs. We define the completion time ¢; of job j to be
the sum of the lengths of jobs in the ordering up to and including /;. Our goal is to output an
ordering of jobs that minimizes the weighted sum of completion times ZJ- W;G;.

1.2.1 Intuition

Our intuition tells us that if all jobs have the same length, then we prefer larger weighted jobs
to appear earlier in the order. If jobs all have equal weights, then we prefer shorter length jobs
in the order.

1 2 3 Vs. 3 2 1

In the first case, assuming they all have equal weights of 1, Zle wici=14+34+6=10. In
the second case, 3.7, wic; =3+ 5+ 6 = 14.

1.2.2 Optimal Substructure

What do we do in the cases where /; < /; and w; < w;? Consider the optimal ordering of jobs.
Suppose we have a job / that is followed by job j in the optimal order. Consider swapping
jobs i and j. The example below swaps jobs 1 and 2.

h h k h

1 2 — 2 1

Note that swapping jobs / and j does not alter the completion times for every other job and
only changes the completion times for / and j. ¢; increases by /; and ¢; decreases by /;. This
means that our objective function . w;c; changes by w;/; — w;/;. Since we assumed our order
was optimal originally, our objective function cannot decrease after swapping the jobs. This
means,
W,'/J‘ — WJ/, > 0

which implies

b

wp Wi

Therefore, we want to process jobs in increasing order of V’V— the ratio of the length to the
weight of each job. The algorithm also does a single pass over jobs, and thus only requires
O(n) time, assuming the jobs were ordered by V’V—’/ Like previously, if the algorithm also needed
to sort the jobs based on the ratio of length to weight, then its runtime would be O(nlog n).

1.3 Optimal Codes

Our third example comes from the field of information theory. In ASCII, there is a fixed 8 bit
code for each character. Suppose we want to incorporate information about frequencies of
characters to obtain shorter encodings. What if we want to represent characters by codes of
different lengths depending on each character’s frequencies? We explore a greedy solution to
find the optimal encoding of characters.

To create optimal codes, we want a way to encode and decode our sequence. To encode the
sequence, we would just have to concatenate the code of each character together. How about
for decoding? Consider the following codes of characters: a —+ 0, b — 1, ¢ — 01. However,

when decoding, when we encounter 01, this could be decoded as “ab” or “c”. Therefore, our
codes need to be prefix free: no codeword is a prefix of another.

1.3.1 Tree Representation

We may think of representing our codes in a tree structure, where the codewords represent
the leaves of our tree. An example is shown below:

Above, in addition to the characters {a, b, ¢, d, e, f}, we've included frequency information.
That is, f(a) = 0.45 means that the probability of a random character in this language being
equal to a is .45.

The code for each character can be found by concatenating the bits of the path from the
root to the leaves. By convention, every left branch is given the bit 0 and every right branch
is given the bit 1.

As long as the characters are on the leaves of this tree, the corresponding code will be prefix-
free. This is because one string is a prefix of another if and only if the node corresponding to
the first is an ancestor of the node corresponding to the second. No leaf is an ancestor of any
other leaf, so the code is prefix-free.

1.3.2 How good is a code?

Suppose we have a set of characters C with frequencies f(c) so that > .- f(c) = 1. That
is, f(c) can be thought of as the probability of using a letter ¢ in this language. The cost, in
terms of bits, of a character ¢ € C when using the coding scheme represented by a tree T is
just the depth in the tree T: cost(c) = dr(c). For example, in the tree above, e has depth 4
in the tree, and requires 4 bits to represent. The average cost of the tree is

B(T) = Ececldr(c)] = Y _ f(c)dr(c).

ceC

We say that a tree T is optimal if this expected cost B(T) is as small as possible.

1.3.3 Huffman Codes

In 1951, David A. Huffman, in his MIT information theory class, was given the choice of a
term paper or final exam. Huffman chose to do the term paper rather than take the final
exam. He found greedy algorithm to find the most efficient binary code, which we know today
as Huffman codes.

The basic idea is this: build subtrees for subsets of characters and merge them from the
bottom up, combining the two trees with the characters of minimum total frequency.

Algorithm 2: A high-level version of the Huffman Coding algorithm.

Input: Set of characters C = {c;, &, ..., ¢c,} of size n, and
F={f(c1), f(c),...,f(cy)}, aset of frequencies.

Create nodes N, for each character ¢k, with key f(ck).

Let current denote the set {Ny, ..., N,} of nodes.

while current has length more than one do
Find the two nodes /V; and N; in current with the minimum frequencies and create a

new intermediate node / with V; and N; as its children, so that
I.key = Nj.key + N;.key.
Add | to current and remove N;, N;.

return the only entry of current, which is the root of the tree.

The tree shown above results from running this algorithm on the letters with those frequencies;
see the slides for an illustration of this process.

1.3.4 Proof of Correctness

This algorithm works, but at first it’s not at all obvious why. For a rigorous proof, refer to
Lemmas 16.2 and 16.3 in CLRS. However, we'll sketch the idea below. Formally, the proof
goes by induction. Recall that after iteration t in Algorithm 2, we have a list current, which
contains the roots of subtrees that we still need to merge up. We will maintain the following
inductive hypothesis:

e Inductive hypothesis: Suppose we have completed t iterations of the loop in Algorithm 2.
Then there exists a way to merge the subtrees in current that is optimal.

e For the base case, we observe that when t = 0, current is just the set of all characters,
and definitionally there exists an optimal tree made out of these nodes.

e For the inductive step, we need to show that if the inductive hypothesis holds at step
t — 1, then it holds at step t. We'll sketch this later.

e Finally, to conclude the argument, we see that at the end of the algorithm, there is only
one element in current, and in this case the inductive hypothesis reads that there is a

way to merge this single subtree to obtain an optimal subtree. That's just a convoluted
way of saying that the single tree we return is optimal, and so we are done.

All that remains to show is the inductive step. We first observe the following claim:

Proposition 2. We are given a set of characters C and a set of its associated frequencies
F where f(c) is the frequency of character c. Let x and y be the characters with the two
smallest frequencies. There exists an optimal coding tree for C such that x,y are sibling
leaves.

Proof. Let T be the optimal coding tree for C. The optimal coding tree must be a full binary
tree, that is, every non-leaf node must have two children. Let a, b be characters that are
sibling leaves of maximum depth. We define the number of bits to encode ¢ as dr(c) and the
number of bits needed for the coding tree as B(T) =) __f(c)dr(c).

We can replace a, b by x, y without increasing the total number of bits needed for the coding
tree.! If we swap x and a, the change in cost becomes

f(x)dr(a) + f(a)dr(x) — f(x)dr(x) — f(a)dr(a) = (f(x) — f(a))(dr(a) — dr(x)) <0

Therefore, swapping a, b with x, y will not increase our objective function B(T). Hence, there
exists an optimal coding tree where x, y are siblings in the tree.]

Proposition 2 shows that there exists an optimal coding tree where x and y are sibling leaves,
that is, there is an optimal code that makes the same greedy choice as the algorithm. However,
this is only immediately helpful for the first iteration of the inductive step, when all of the
elements of current are indeed leaves. In order to make this idea work for all £, we need one
more claim.

Proposition 3. Let C be a set of characters, and let T be an optimal coding tree for C.
Imagine creating C' from C by collapsing all the characters in a subtree rooted at a node N
with key k = N.key into a single character ¢’ with frequency k. Then the corresponding tree
T' is optimal for C’.

Conversely, suppose that a tree T' that is an optimal coding tree for an alphabet C'. Let
¢’ € C' be a character with frequency f(c'). Introduce new characters c{, ..., c/ with total
frequency Y '_, f(c!") = f(c'). Let T" be an optimal coding tree on ¢y, ..., c/. Then the

tree T on the alphabet C = (C'\ {c'})u{c/,..., c'} that has the leaf ¢’ replaced with the
subtree T" is optimal.

Proof. Let T and T’ be the two trees described in the lemma, and consider the difference of

LFor simplicity, we ignore the case where a, b, x, y are not distinct. For more details, see Lemma 16.2 in
CLRS.

their costs.

B(T) — => f(c)-dr(c) =Y _ f(c) drlc)

ceC cec’

- (Z f(c/’)dr(cf’)> — £(c)dn(c)
= <Z f(c")(d)+ dr(c))) — () dr(c)
= 3 A e) + dr () 3D () — A ()

:if(c

where the last line used the fact that >_'_, f(c/") = f(c’), and so the last two terms cancelled.
This means that the difference in the cost between these two trees only depends on T,

it doesn’t depend at all about the structure of T. Thus, T is optimal if and only if T is
optimal. O

The two Claims together prove the inductive step, because the second claim implies that the
logic of the first claim holds, even for newly created intermediate nodes /.

Note: The proof in CLRS has the same basic steps (Lemmas 16.2 and 16.3 instead of the
claims above), although phrased slightly differently. The sketch above is pretty sketchy, so if
the above is hard to follow, please check out CLRS for a more detailed version.

	Greedy Algorithms
	Activity Selection Problem
	Optimal Substructure

	Scheduling
	Intuition
	Optimal Substructure

	Optimal Codes
	Tree Representation
	How good is a code?
	Huffman Codes
	Proof of Correctness

