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Minimum Spanning Trees

1 Introduction

Today we will continue our discussion of greedy algorithms, specifically in the context of
computing minimum spanning trees. There are many useful applications for finding a minimum
spanning tree of a graph from efficient network design to graph clustering analysis and much
more. We will also show that we can compute a minimum spanning tree of a graph in
polynomial time using some intuitive greedy algorithms.

The minimum spanning tree problem is formulated informally as follows: we are provided an
undirected graph G = (V, E) with weights w(e) € R for e € E and we want to compute
a subgraph of G that is a tree which connects all vertices in V' (a spanning tree) and has
minimum total edge weight defined as w(T) = ..+ w(e).

Below is an example of an MST of a graph. In the example, the edges forming the MST are
colored blue while edges that are not part of the MST are colored black:

2 A Template for Minimum Spanning Tree Algorithms

Let's start by introducing a basic algorithm template which will guide our discussion towards
the actual algorithms for computing MSTs. These algorithms will in general follow the steps
described in the template below:

We will show that the template results in a valid MST by maintaining the invariant that there
exists at least one MST which contains all the edges in A. An edge is considered safe to
add to A as long as it maintains this invariant. We will see that this definition of a safe edge



Algorithm 1: Template for Minimum Spanning Tree Algorithms

A0
while A is not a spanning tree do
find edge (u, v) that is ‘safe’ for A
L A+ AU{u, v}
return A

can informally be defined as the edge with minimum weight which would not form a cycle if
included in A. The next section will introduce new terminology to define this formally.

3 Cuts and Light Edges

We will introduce the notion of graph cuts to formally discuss which edges can be considered
safe to add to the MST edge set. Let a cut (S,V — S) of a graph G = (V, E) be a partition
of V into two disjoint sets S and V' — S. From this, we can say that an edge (u, v) crosses
the cut (S,V — S) if the edge has one endpoint in S and the other in V — S. We can also say
that a cut respects a subset A of edges if no edges in A cross the cut. An edge is considered
a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

In the example above, let (S,V — S) be a cut of the graph where S contains the set of
nodes above the red curve and V — S contains the set of nodes below it, and the set A
be the set of edges colored blue. The edges which cross the cut are exactly the following:
(a, h), (b, h),(b,c) (c d),(d ) (e f)and the only light edge which crosses (S,V — S) is
(¢, d). Since none of these edges are contained in the set A, the cut respects the set A. Note
that if we were to add any of the edges previously mentioned to A, then the cut would no
longer respect A.

Given the definitions above, let G = (V, E) be a connected and undirected graph with edge
weights w(e), A be a subset of E such that some MST of G contains A, (S,V — S) be a cut
that respects A, and (u, v) be a light edge crossing (S,V — S).

Theorem 1. There exists an MST that contains AU {(u, v)}.

Proof. Let T be an MST containing A. As previously mentioned, (u, v) is a light edge which



crosses the cut (S,V — S). Since T is already a spanning tree, note that adding any other
edge of the graph to it will lead to a cycle, so in particular adding (u, v) to T produces a cycle.
Consider a path p from v to v in T. There will necessarily be at least one edge (x, y) of p
which crosses the cut (S,V — S) where (x, y) ¢ A because the cut respects A. Since (u, v) is
a light edge, w(u, v) < w(x, y). Deleting (x,y) from T and adding (u, v) yields a new MST
T'. The only difference between T and T’ are the edges (x, y) and (u, v) so w(T’) < w(T).
T’ is an MST which contains AU {(u, v)}. O]

Note that in the proof, if w(T") # w(T), then we have that our initial assumption of T being
an MST s false since we have found a spanning tree with a smaller total edge weight.

Because of the theorem, we can add some additional points about the MST algorithm
template.

e The MST algorithm maintains a subset A of edges with no cycles. That is, the graph
represented by G4 = (V, A) is a forest (a set of distinct unconnected trees).

e Any safe edge (u, v) connects two distinct connected components of Ga.

e For some connected component C = (¢, E¢) in Ga, the safe edge (u, v) is a light edge
crossing (Ve,V — \¢).

4 Prim’s Algorithm

At a high level, the set A maintained by Prim’'s algorithm is a single tree. The algorithm starts
with an arbitrary root r and in each step, a light edge leading out of A and connecting to a
node that has not yet been connected to A is selected and added to A. Once A connects
every node in the graph, it is returned as an MST of the graph.

Prim’s algorithm is similar to Dijkstra’s algorithm in that estimates of the distance to each
node are maintained and updated as the algorithm progresses. Q is a priority queue maintaining
distances of vertices not in the tree so far, key(v) is the minimum weight of edge connecting
v to some vertex in the tree, and p(v) is the parent of v in the tree.

Correctness Much of the correctness of Prim's algorithm follows from Theorem 1. Notice
that at the beginning of every loop iteration, A={ (p(v),v) : v e (V —{r} — Q)} meaning
that the vertices already placed in the partial MST are those in V — Q. For all vertices v € Q,
if p(v) # NIL, then key(v) is the minimum weight of an edge connecting v to the partial
MST. This can be thought of in terms of graph cuts with partitions (Q,V — Q) and the
vertices in @ with non-NIL parents as being the tail of edges crossing this cut. Since in Q,
only the vertices with non-NIL parents have key # oo (except for r in the first iteration), this
means that only the edges which cross the cut are considered at each iteration and the one
with minimum weight is added to A. This is exactly what the MST template algorithm does
(we add a safe edge) and as such, the correctness of the algorithm follows.



Algorithm 2: Prim(G)

key(v) < o0, Vv € V

key(r) <~ 0

Q « (key(v), v), Vv eV

p(v) < NIL, Vv e V

A0

while Q is not empty do

u < ExtractMin(Q)

if u # r then

L A=AU{(p(v), u)}
for each neighbor v of u do
if veQ andw(u,v) < key(v) then

key(v) = w(u, v)
DecreaseKey(key(v), v)
p(v) =u

return A

Running time Prim’s Algorithm can be implemented as a direct modification of Dijkstra’s
Algorithm and can achieve a similar running time, but its exact bound depends on the
implementation of the priority queue.

If a red-black tree or a binary heap is used:

e ExtractMin: O(logn)

e DecreaseKey: O(logn)

e Total: O(nlogn+ mlogn) = O(mlog n)
If a Fibonacci heap is used:

e ExtractMin: O(logn)

e DecreaseKey: O(1) amortized

e Total: O(nlogn+ m)

Example In this example we will run through the steps of Prim’s algorithm in order to find
an MST for the following graph:



Suppose we select node a to be the source node, r. We then extract node a from @ and set
key(b) =4, p(b) = a, key(h) =8, and p(h) = a.

Since key(b) is now the smallest value in the priority queue, we visit node b. Because p(b) = a

we add edge (a, b) to the set A. We then update the keys and parent fields of nodes that
have edges connecting to b. Thus we set key(c) = 8 and p(c) = b.

The next smallest in the priority queue is a tie between key(c) and key(h). The algorithm
can pick either one — the results may be different, but both will be an MST. Let's say the
algorithm arbitrarily picks c. We add edge (b, ¢) to A and perform the following updates:
key(d) =7, p(d) = c, key(f) =4, p(f) = c, key(i) = 2, and p(i) = c.



key(/) is the smallest so we visit node /. Update the following: key(g) = 6, p(g) = i, key(h)
=7, and p(h) =1/.

key(f) is the smallest so we visit node f. Update the following: key(g) = 2, p(g) = f, key(e)
=10, and p(e) = f.




key(h) is the smallest so we visit node h. There are no updates at this step.

Finally, key(e) is the smallest so we visit node e. There are no updates at this step and the
algorithm will detect that Q is empty at the next iteration and return.

5 Kruskal’s Algorithm

At a high level, the set A maintained by Kruskal's algorithm is a set of disjoint trees. During
update step /, if the /th smallest edge connects different trees, merge the two trees connected
by this edge. The algorithm progresses until eventually only one tree remains at which point
the set A represents an MST of the graph.

Kruskal's algorithm utilizes the union-find (aka disjoint set) data structure in order to handle
the merging of the disjoint trees maintained by the algorithm. The union-find data structure
supports disjoint sets with the following operations:



e makeset(v): creates a new set containing u provided that v is not in any other set
e find(u): returns the name of the set containing u
e union(u, v): merge the set containing u and the set containing v into one set

The algorithm itself can be structured as follows:

Algorithm 3: Kruskal(G)
A0
E’ < sort edges by weight in non-decreasing order
foreach v € V do
| makeset(v)
foreach (u,v) € E' do
if find(u) # find(v) then
L A—AU{(u,v)}

union(u, v)

return A

Correctness The correctness follows from Theorem 1.

Running time The runtime of Kruskal's algorithm depends on two factors: the time to
sort the edges by weight and the runtime of the union-find data structure operations. While
Q(mlog n) time is required for sorting the edges if we use comparison-based sorting, in many
cases, we may be able to sort the edges in linear time. (Recall, that RadixSort can be used to
sort the edges in O(m) time if the weights are given by integers bounded by a polynomial in m.)
In this case, the runtime is bounded by the runtime of the union-find operations and is given
by O(nT (makeset) + mT (find) + nT (union)). The best known data structure supporting the
union-find operations runs in amortized time O(a(n)) where a(n) is the inverse Ackermann
function. Interestingly, the value of the inverse Ackermann is tiny for all practical purposes:

a(n) <4, VYn< # atoms in the universe

and thus for all practical purposes, the union-find operations run in constant time. Thus, in
many settings, the runtime of Kruskal's algorithm is nearly linear in the number of edges.

The actual definition of a(n) is a(n) = min{k | A(k) > n}, where A(k) is the Ackermann
function evaluated at k. A(k) itself is defined using the more general Ackermann function as
A(k) = Ak(2). Ak(x) is defined recursively:

x+1 m=20
Am(x) =< An_1(1) m>0,x=0
An_1(An(x—1)) else

For example



o Ao(x) =1+x,s0 Ap(2) =3.
e To compute A;(x), we see:
A1(x) = Ao(A1(x—1)) = Ao(Ao(A1(x—=2))) = -+ = Ao(Ao(- - - (Ao(A1(0))))) = Ao(Ao(- - - (Aa(2)))).
that is, we have “iterated" Ag x times. If we work it out, we get
Ai(x) = 2x.
Thus, A;(2) = 4.
e Ax(x) =2*x (A, iterated x times), so A>(2) =8
o As(x) > 22" 3 “tower" of x 2s (A, iterated x times); it turns out As(2) > 2%

e A,(x) is larger than the total number of atoms in the known universe, and also larger
than the number of nanoseconds since the Big Bang. (Thus, a(n) < 4 for all practical
purposes.)

Example In this example we will run through the steps of Kruskal's algorithm in order to
find an MST for the following graph:

We begin by creating a new set for each node in the graph. We then begin iterating over the
edges in non-decreasing order. The first edge we examine is (g, h). This edge connects nodes
g and h which are currently not part of the same set. We thus include this edge in A and
union the sets containing g and h.




The next edge in the sorted order is a tie between edges (¢, i) and (f, g). Picking either one
will yield a correct result, so let's say the algorithm picks (c, /). Since ¢ and i are not part of
the same set we include this edge in A and union the sets containing ¢ and I.

The next edge in the sorted order is (f, g). We union the sets containing f and g and add
edge (f,g) to A.

The next edge in the sorted order is a tie between edges (a, b) and (¢, f). Let's say the
algorithm picks (a, b). We union the sets containing a and b and add edge (a, b) to A.

The next edge in the sorted order is (c, f). We union the sets containing ¢ and f and add
edge (c, f) to A.

10



The next edge in the sorted order is (/, g). Note that / and g are contained in the same set
which means that adding the edge (/, g) would lead to a cycle in A. We therefore ignore (/, g)
and pick the next edge in sorted order which is a tie between (c, d) and (h, /). Let's say the
algorithm picks (c, d). We union the sets containing ¢ and d and add edge (c, d) to A.

The next edge in the sorted order is (h, i), but h and / are contained in the same set so we
ignore it. The next edge is a tie between edges (a, h) and (b, ¢). Let's say the algorithm
picks (a, h). We union the sets containing a and h and add edge (a, h) to A.

The next edge in the sorted order which has both vertices in different sets is (d, ). We union

the sets containing d and e and add edge (d, e) to A. At this point all nodes are contained in
the same set, so no further edges are added to A.
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6 The Latest and Greatest Algorithms

While the greedy algorithms mentioned above are reasonably efficient ways to compute a
minimum spanning tree of a graph, recent research has yielded more efficient algorithms. In
1995, Karger, Klein, and Tarjan discovered a randomized linear time (O(E + V')) algorithm
based on Boriivka's algorithm and the reverse-delete algorithm. In 2000, Chazelle discovered
the current fastest determistic algorithm which runs in time O(Ea(V)) using soft heaps where
a is the inverse Ackermann function.
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