Lecture 3

Recurrence relations and how to solve them!



Announcements

* Homework 1 is due Wednesday by midnight
 Homework 2 will be released next Wednesday (still solo)

* Please (continue to) send OAE letters to
cs16l-staff-win2526@cs.stanford.edu (by FrilJan 16)

* Midterm: Wed Feb 11, 6-9pm
* Final: Wed Mar 18, 3:30-6:30pm

e Let us know ASAP about midterm exam conflicts
* No final exam accommodations due to conflicting courses


mailto:cs161-staff-win2526@cs.stanford.edu

Announcements

e Office hours:

* Online:
Queue Style
* Click sign up on http://queue.cs.stanford.edu
e Connect to the Zoom meeting (you’ll go to the waiting room)
* The CA will let you into the Zoom room when it’s your turn

* [n-person:
* Queuestatus NOT used for in-person OHs (just show up)

* Default location: Huang basement (unless the calendar says
otherwise.) See
https://stanford-cs161.github.io/winter2026/staff/

* HW-Party:
* Mondays 5:30-7:30pm
* Default location: Huang Basement



Sections

Taught by your amazing CAs and will

* recap lecture

e show you how to apply the ideas you learned in lecture
* canh occasionally cover new material

Sections are as “mandatory” as lectures:
 we will not track attendance, but

 sections (practice, practice, practice) are the best way to
learn the material in CS 161

* also, a good place to find community



Schedule General Section Information

Lectures + One section will be held on Zoom and recorded. The Zoom link can be found on Canvas.

Sections

Homework Sections

Exams

Resources Section 0.5: Big-O, Complexity, and Induction (Review section)
Fri, Jan 9, 1:30 pm - 2:50 pm (Zoe & Will, STLC 111)

Policies
Resources

taff /| Office H .

Staff / Office Hours Slides: [PDF]

CS 161A
Recording

- Video: [Canvas]

Section 1

Thu, Jan 8, 11:00 am - 12:00 pm (Simon, Remote (Zoom link on Ed, recordings on Canvas))
Thu, Jan 8, 1:30 pm — 2:30 pm (Will, Bldg. 160, Rm. 315)

Thu, Jan 8, 4:30 pm - 5:30 pm (Yash, Bldg. 160, Rm. 322)

Fri, Jan 9, 12:00 pm - 1:00 pm (Nikhil, Bldg 160, Rm. 125)

Resources
- Handout: [PDF]
Handout Solutions: [PDF]



Last time....

 Sorting: InsertionSort and MergeSort

 What does it mean to work and be fast?
* Worst-Case Analysis
* Big-Oh Notation

* Analyzing correctness of iterative + recursive algs

e Induction!

* Analyzing running time of recursive algorithms
* By drawing out a tree and adding up all the work done.



Today

 Recurrence Relations! ‘

e How do we calculate the runtime of a recursive
algorithm?
* The Master Theorem

e A useful theorem so we don’t have to answer this
guestion from scratch each time.

* The Substitution Method

* A different way to solve recurrence relations, more
generally applicable than the Master Method.



Running time of MergeSort

* Let T(n) be the running time of MergeSort on a
length n array.

* We know that T'(n) = O(nlog(n)).

* We also know that T(n) satisfies:
n MERGESORT(A):

n = length(A)
2)+0(n) if n < 1:

return A
L = MERGESORT(A[:n/2])
R = MERGESORT(A[n/2:])
return MERGE(L, R)

T(n)=2-T(



Running time of MergeSort

* Let T(n) be the running time of MergeSort on a
length n array.

* We know that T'(n) = O(nlog(n)).

* We also know that T(n) satisfies:

n MERGESORT(A):
T(n) < 2-T(—) +11-n n = length(A)
2 / if n < 1:
return A
Last time we showed that the time to run MERGE L = MERGESORT(A[:n/2])
on a problem of size nis O(n). For concreteness, R = MERGESORT(A[n/2:])

let’s say that it’s at most 11n operations. return MIERGE(L, R)



Note (read after class):
T(n) < 2-T(§)+11-n(witha3)is

also a recurrence relation. A recurrence

1 |lati ith an “=“ ly defi
Re C U r re n C e Re ‘ at I O n S fur:c:itol(r)\?:Vrlécuar:enceer)(eé}:tizn ;Ii?:zz

inequality only bounds it.

*T(n)=2-T(=)+ 11 -n is a recurrence relation.
2

* It gives us a formula for T(n) in terms of T(less than n)

* The challenge:

Given a recurrence relation for T(n), find a
closed form expression for T(n).

* Forexample, T(n) = O(nlog(n))



Technicalities | ﬁ
Base Cases Y& plucky the

Pedantic Penguin

* Formally, we should always have base cases with
recurrence relations.

. T(n) = 2-T(§)+ 11-n with7(1) = 1
is not the same function as
e T(n)=2-T (g) +11-n with 7(1) = 1000000000

* However, no matter what Tis, T(1) = O(1), so sometimes

we’ll just omit it.
Why does T(1) = O(1)?

Siggi the Studious Stork



On your pre-lecture exercise

* You played around with these examples (when n is
a power of 2):

1 T(n) =T (g) +n, T(1) =1

2 T(n)=2-T(§)+n, T(1) =1

3 T(n)=4-T(§)+n, T(1) =1



One approach for all of these

* The “tree” approach @
from last time. @ 0

* Add Il th k

Qoneu:taalltthee\l:l?tr)- @ @ @ @

problems.
DDOOOOOOO
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(Size 1)




Pre-lecture exercise

e (when nis a power of 2):
1 T(n) =T (g) +n, T(1) =1

2 T(n)=2-T(§)+n, T(1) =1

3 T(n)=4-T(§)+n, T(1) = 1



Solutions to pre-lecture exercise (1)

Contribution
at this layer:

T, () =T, (3)+n, T =1

* Adding up over all layers:

log(n)

n
z§=2n—1 n/4

=0

*SoT,(n)=0(Mmn). n/2t

O 1

(Size 1)



Solutions to pre-lecture exercise (2)

o T, (n) = 4T, ( ) +n, T,(1) = 1.

Contribution

« Adding up over all layers: at this layer:
log(n) log(n) "
2 4t 2 =n z 2
i=0
= n(Zn — 1)
* SoT,(n) = 0(n?)
( 4t x > 2tn
O,  O®
(Size 1)




More examples

T(n) = time to solve a problem of size n.

* Needlessly recursive integer multiplication
eT(n) = 4T(n/2) + O(n)

This is similar t
e T(n) = 0(n?) \Tz'fié?i'{‘ﬁ;a;re‘f

lecture exercise.

e Karatsuba integer multiplication
eT(n) = 3T(n/2) + O(n)
°T(n) — 0(n1°g2(3) ~ n1.6)

* MergeSort
eT(n) = 2T(n/2) + O(n)

*T(n) = 0(nlog(n))  \Wwhat’s the pattern?1?1?1?!



The master theorem

A useful formula it is.
Know why it works
you should.

* A formula for many
recurrence relations.

 We'll see an example next
lecture where it won’t work.

* Proof: “Generalized” tree
method.

Jedi master Yoda



We can also take n/b to

The master theorem mean eiher [, or [;] and

the theorem is still true.

e Suppose thata = 1,b > 1,and d are constants
(independent of n).

e SupposeT(n) =a-T (%) + 0(n4). Then
(
0(n%log(n)) ifa = b?

Show the (), ®

T(Tl) — < O(nd) lfa < bd versions after

lecture.

LO(‘nl"fv’b(a)) if a > b?

Three parameters:

a : number of subproblems

b : factor by which input size shrinks

d : need to do n? work to create all the
subproblems and combine their solutions.

Many symbols
those are....



Technicalities Il

Integer division Plucky the

Pedantic Penguin

{!

* If nis odd, | can’t break it up into two problems of
size n/2.

10 =1 ([3) +7 (5] + 000

 However (see CLRS, Section 4.6.2 for details), one can
show that the Master theorem works fine if you
pretend that what you have is:

T(n) =2 - T(g) + 0(n)

* From now on we’ll mostly ignore floors and ceilings
in recurrence relations.



Tn)=a-T (%) + O(nd).

That other one

* T(n) =T(n/2) + O(n) 2 < b

Examples f
0(n%log(n)) if a = b
T(n) = { 0(n%) ifa < b®
\O(nlogb(a)) ifa > b
* Needlessly recursive integer mult. .
* T(n)=4T(n/2) + O(n) b=2 a > bd \/
* T(n) =0(n?) d=1
e Karatsuba integer multiplication
a=3
* T(n)=3T(n/2) + O(n) b= 3> b \/
° T(n) — O( I,]Iog_2(3) ~ n1.6) d=1
* MergeSort ,
Q=
* T(n) =2T(n/2) + O(n) b=2 3 = pd \/
* T(n) =0O(nlog(n)) d=1

o T o
noonon
=N R

* T(n) =O(n)



Proof of the master theorem

 We'll do the same recursion tree thing we did for
MergeSort, but be more careful.

e SupposethatT(n) <a-T (%) + ¢ - n?.

Hang on! The hypothesis of the Master Theorem was
that the extra work at each level was O(nd), but we’re
writing cnd...

That’s true ... the hypothesis should be that
Tn)=a-T (%) + O(nd). For simplicity, today

we are essentially assuming that np =1 in the
definition of big-Oh. It’s a good exercise to verify
why that assumption is without loss of generality.

Plucky the
Pedantic Penguin Siggi the Studious Stork



' _ .7 (" d
Recursion tree rtm=a-7(;)+cn . Amountof
1z€ 0 work at this
H each level
Level | problems problem

0 1 n

1 a n/b

2 a2 n/b?

n/bt n/bt  n/bt n/bt  n/bt n/bt t 3t n/bt

200 ®
(Size 1)

© 9% @ @ logy(n)




Recursion tree

T(n)=a-T(%)+c-nd

, Amount of
Help me fill this in! How much work at each level? Size of work at this
’. 1 minutes: think ~ How much work total? ~ # each level
1 minute: share (wait) Level | problems problem
<D o 1 n e
N
DO @ : " b
2 2 n\?
2 d n/b a‘c (ﬁ)
d
n/bt n/bt  n/bt  n/bt n/bt  n/bt t qt n/bt ate (%)
o, _0_60_© @'
. ‘ ‘ ‘ ‘ ‘ |Ogb( n) alOgb (n) 1 (Let’s pretend that the

(Size 1)

base case is T(1) = c for
convenience).



n

Recursion tree  rm=a-1(3)+en

e of Amount of
Size 0 work at this
H each level
Level | problems problem
. nd
0 1 n c-n
1 3 n/b

Total work is at most:

2709969 @ logn)
(Size 1)

alogb (Tl) c

(Let’s pretend that the
base case isT(1) = c for
convenience).




Now let’s check all the cases

rO(‘nd log(n)) ifa = b?
T(n) = « O(nd) ifa < b
ko(nlogb(a)) ifa > b?




fO(nd log(n)) ifa = b4
. _ d T(n) = { 0(n%) if a < b
Casel:a=0>b o(non @) ifa> b

e T(n) =c-n%- 1080b(n)
d Zlogb(n)l

=c-n%- (log,(n) + 1)

et (2 01)

= 0(n%log(n))




fO(nd log(n)) ifa = b4
T(n) = { 0(n%) ifa < b®
Case 2: a < b“@ oo @) e b

. _ d vlogp(n)
T(n) = c-n* Y.~



Aside: Geometric sums

e Whatis )\, xt?

N+1_1

* You may remember that Y2, x* — forx # 1.

* Morally:

X +xt x4+ a3+ xN

e N\

If 0 < x <1, this term dominates. (Ifx =1, all If x > 1, this term dominates.
terms the same
XN+1—1 1 ) N+1
1< 1 Sl _X,'N<x _1<xN-(x)
X x - ox—=1 x—1

(Aka, B(1) if x is constant and N is growing). (Aka, ®(x") if x is constant and N is growing).



fO(nd log(n)) ifa = b4
. d T(n) = { 0(n%) ifa < b®
Case2:a < b o(non @) ifa> b

. _ d vlogp(n)
T(n) = c-n* Y.~

= ¢ -n% - [some constant]
= 0(n%)



rO(nd log(n)) ifa = b4

. d T(n) = { 0(n%) ifa < b4

Case3:a>0b o(non @) ifa> b
t
¢ T(Tl) = C- Tld y iigob(n) (b;ad) +——————— lLargerthan 1!
logp(n)
— d (&
o(nGe) )
Convince yourself that
= @(nlogb (a)) this step is legit!

O

We’ll do this step on the board!



Now let’s check all the cases

T(n) = A«

(O(nd log(n))  ifa = b
0(n%) ifa < b

0(on@) ifa> b




Understanding the Master Theorem

eleta>1,b > 1,and d be constants.
e SupposeT(n) =a-T (%) + 0(n4). Then

rO(nd log(n)) ifa = b
T(n) = { 0(n?) ifa < b?
kO(nlogb(a)) ifa > b?

* What do these three cases mean?



The eternal struggle

o)) @f’

o
Y,

S

Branching causes the number The problems lower in
of problems to explode! the tree are smaller!
The most work is at the The most work is at

bottom of the tree! the top of the tree!



Consider our three warm-ups

1. T(n) = T(%) +n

2 T(n):z-T(§)+n
3 T(n):4-T(§)+n



First example: tall and skinny tree

1. T(n)=T(§)+n, (a < b?)

e The amount of work done at the

top (the biggest problem) swamps
the amount of work done anywhere @
else. |

o

Most work at the é}
top of the tree!

 T(n) = O( work at top ) = O(n)

WINNER




hird example: bushy tree

WINNER

3T =4-T(3)+n  (a>b?)

Most work at
the bottom
of the tree!

 There are a HUGE number of leaves, and the total work is
dominated by the time to do work at these leaves.

* T(n) = O( work at bottom ) = O( 4depthoftree ) = §(n?2)

XARIKY T TV 270 2 0




Second example: just right

2. T(n) = z-T(g) +n,  (a=b?) @
* The branching just balances 0 0

out the amount of work.

The same amount of work @ @ @ @

is done at every level.

* T(n) = (number of levels) * (work per level)
= log(n) * O(n) = O(n log(n))

TIE!
;Fﬁ q 000000006




What have we |learned?

e The “Master Method” makes our lives easier.

e But it’s basically just codifying a calculation we
could do from scratch if we wanted to.



The Substitution Method

* Another way to solve recurrence relations.
* More general than the master method.

 Step 1: Generate a guess at the correct answer.

* Step 2: Try to prove that your guess is correct.
* (Step 3: Profit.)



The Substitution Method

first example

e Let’s return to:
T() =2-T (g) +n, with T(0) = 0,7(1) = 1.

* The Master Method says T'(n) = O(nlog(n)).
* We will prove this via the Substitution Method.



T(n)=2-T (g) +n, with T(1) = 1.

Step 1: Guess the answer

You can guess the
answer however

) T(n) =2 T you want: meta-
3 Expand T reasoning, a little

’ T(n) =2 bird told you,
4)Smphfy wishful thinking,

etc. One useful

e T(n) = 4- T + 2n )
way is to try to
o T(n) = 4. } Expand T “unroll” the

recursion, like
: T(n) =38 T( ) + 3n A)Slmpllfy we’re doing here.

Guessing the pattern: T(n) = 2t - T (%) +t-n

Plugin t = log(n), and get
T(m)=n-T() +log(n) -n =nlog(n) +1)



T(n) =2-T (g) +n, with T(1) = 1.

Step 2: Prove the guess is correct.

* Inductive Hypothesis: T(n) = n(log(n) + 1).
* Base Case (n=1):T(1) =1=1"-(log(1) + 1)

* Inductive Step:
e Assume Inductive Hyp.forl1 < n < k:
* Suppose that T(n) = n(log(n) + 1) forall 1 < n < k.
* Prove Inductive Hyp. for n=k:

e T(k)=2-T (g) + k by definition
e T(k)=2- (g (log (S) + 1)) + k by induction.

* T(k) = k(log(k) + 1) by simplifying.
* So Inductive Hyp. holds for n=k.

* Conclusion: Foralln =1, T(n) = n(log(n) + 1)

_q
)
We're being sloppy here about floors and
ceilings...what would you need to do to be less sloppy? .‘



Step 3: Profit

* Pretend like you never did Step 1, and just write down:

* Theorem: T(n) = 0(nlog(n))
* Proof: [Whatever you wrote in Step 2]



What have we |learned?

* The substitution method is a different way of
solving recurrence relations.

* Step 1: Guess the answer.
* Step 2: Prove your guess is correct.
* Step 3: Profit.

* We'll get more practice with the substitution
method next lecture!



Another example (if time)

(If not time, that’s okay; we’ll see these ideas in Lecture 4)

-T(n)zz-T(§)+32.n
e T(2) = 2

* Step 1: Guess: O(nlog(n)) (divine inspiration).

* But | don’t have such a precise guess about the
form for the O(n log(n)) ...

* That is, what’s the leading constant?
* Can I still do Step 27



Aside: What’s wrong with this?

* Inductive Hypothesis: T(n) = O(nlog(n)) Q
*Basecase:T(2) =2=0(1) = 02log(2)) Plucky the

Pedantic
* Inductive Step: Penguin
* Suppose that T(n) = O(nlog(n)) for n <k.
e ThenT(k) =2-T (5) + 32 - k by definition Figure out
. 2 . what’s
. — 7. v v ) : : wrong
SoT(k)=2-0 (2 log (2)) + 32 - k by induction o

e Butthat’s T(k) = O(klog(k)), so the I.H. holds for n=k.

* Conclusion:
* By induction, T(n) = O(nlog(n)) for all n.

Siggi the Studious Stork




Another example (if time)

(If no time, that’s okay; we’ll see these ideas in Lecture 4)

-T(n)zz-T(§)+32.n
e T(2) = 2

* Step 1: Guess: O(nlog(n)) (divine inspiration).

* But | don’t have such a precise guess about the
form for the O(n log(n)) ...

* That is, what’s the leading constant?
* Can I still do Step 27



Step 2: Prove it, working backwards
to figure out the constant

* Guess: T(n) < C -nlog(n) for some constant C TBD.

* Inductive Hypothesis (forn = 2) : T(n) < C - nlog(n)
*Basecase:T(2) =2<(C-2log(2)aslongasC =1

* Inductive Step:

n

T(n)=2-T( )+32-n

T(2)=2



Inductive Hypothesis: T(n) < C - nlog(n)

Inductive step

e Assume that the inductive hypothesis holds for n<k.

e T(k) = 2T (g) + 32k

: < 20 Zlog (%) + 32k
. = k(C -log(k) +32 — ()
. < k(C -log(k))

* Then the inductive hypothesis holds for n=k.

n

T(n)zz-T(2

)+32-n
T(2) = 2



Step 2: Prove it, working backwards
to figure out the constant

* Guess: T(n) < C - nlog(n) for some constant C TBD.
* Inductive Hypothesis (forn = 2): T(n) < C - nlog(n)
*Basecase:T(2) =2<C-2log(2)aslongasC =1

* Inductive step: Works as longas C = 32
* So choose C = 32.

* Conclusion: T(n) < 32 -nlog(n)

n

T(n)=2-T( )+32-n

T(2)=2



Step 3: Profit.

* Theorem: T(n) = 0(nlog(n))

* Proof:
* Inductive Hypothesis: T(n) < 32 - nlog(n)
* Basecase: T(2) =2 < 32-2log(2) istrue.

* Inductive step:
* Assume Inductive Hyp. for n<k.

» T(k) =2T (g) + 32k By the def. of T(k)
. <2.32 -Slog (g) 132k By induction

. = k(32 -log(k) + 32 — 32)

. = 32 - klog(k)

This establishes inductive hyp. for n=k.

* Conclusion: T(n) < 32 -nlog(n) foralln = 2.

* By the definition of big-Oh, with ng = 2 and ¢ = 32, this
implies that T(n) = 0(nlog(n))



Why two methods?

e Sometimes the Substitution Method works where
the Master Method does not.

* More on this next time!



Next Time

 What happens if the sub-problems are different sizes?
* And when might that happen?

BEFORE Next Time

* Pre-lecture 4 exercises!



