
CS 161 (Stanford, Winter 2026) Lecture 4
Adapted from Virginia Williams’ lecture notes and Mary Wootters’ handouts. Additional
credits: Albert Chen, Juliana Cook, Ofir Geri, Sam Kim, Gregory Valiant, Aviad Rubinstein.
Please direct all typos and mistakes to Ellen Vitercik and Moses Charikar.

Median and Selection

1 Introduction

So far we have covered the master theorem, which can be used for recurrences of a certain
form. Recall that if we have a recurrence T (n) = aT

(
n
b

)
+O(nd) where a ≥ 1, b > 1, then

T (n) =


O(nd log n) if a = bd

O(nd) if a < bd

O(nlogb a) if a > bd

Many algorithms that result from the divide-and-conquer paradigm yield recurrence relations
for their runtimes that have the above form – namely algorithms that divide the problem into
equal-sized sub-pieces at each recursion.

Today, we will introduce a problem where the master theorem cannot be applied: the problem
of finding the k-th smallest element in an unsorted array. First, we show it can be done in
O(n log n) time via sorting and that any correct algorithm must run in Ω(n) time. However, it
is not obvious that a linear-time selection algorithm exists. We present a linear-time selection
algorithm, with an intuition for why it has the desired properties to achieve O(n) running time.
The two high-level goals of this lecture are 1) to cover a really cool and surprising algorithm,
and 2) illustrate that some divide-and-conquer algorithms yield recurrence relations that
cannot be analyzed via the “Master Method/Theorem”, yet one can (often) still successfully
analyze them.

2 Selection

The selection problem is to find the k-th smallest number in an array A.

Input: array A of n numbers, and an integer k ∈ {1, . . . , n}.

Output: the k-th smallest number in A.

One approach is to sort the numbers in ascending order, and then return the k-th number in
the sorted list. This takes O(n log n) time, since it takes O(n log n) time for the sort (e.g. by
MergeSort) and O(1) time to return k-th number.

1

2.1 Minimum Element

As always, we ask if we can do better (i.e., faster in big-O terms). In the special case where
k = 1, selection is the problem of finding the minimum element. We can do this in O(n)
time by scanning through the array and keeping track of the minimum element so far. If the
current element is smaller than the minimum so far, we update the minimum.

Algorithm 1: SelectMin(A)

m ←∞
n ← length(A)
for i = 1 to n do

if A[i] < m then
m ← A[i]

return m

In fact, this is the best running time we could hope for.

Definition 1. A deterministic algorithm is one which, given a fixed input, always performs the
same operations (as opposed to an algorithm which uses randomness).

Proposition 2. Any deterministic algorithm for finding the minimum has runtime Ω(n).

Proof. Intuitively, the claim holds because any algorithm for the minimum must look at all the
elements, each of which could be the minimum. Suppose a correct deterministic algorithm does
not look at A[i] for some i . Then the output cannot depend on A[i], so the algorithm returns
the same value whether A[i] is the minimum element or the maximum element. Therefore the
algorithm is not always correct, which is a contradiction. So there is no sublinear deterministic
algorithm for finding the minimum.

So for k = 1, we have an algorithm which achieves the best running time possible. By similar
reasoning, this lower bound of Ω(n) applies to the general selection problem. So ideally we
would like to have a linear-time selection algorithm in the general case.

3 Linear-Time Selection

In fact, a linear-time selection algorithm does exist. Before showing the linear time selection
algorithm, it’s helpful to build some intuition on how to approach the problem. The high-level
idea will be to try to do a Binary Search over an unsorted input. At each step, we hope to
divide the input into two parts, the subset of smaller elements of A, and the subset of larger
elements of A. We will then determine whether the k-th smallest element lies in the first part
(with the “smaller” elements) or the part with larger elements, and recurse on exactly one of
those two parts.

2

How do we decide how to partition the array into these two pieces? Suppose we have a
black-box algorithm ChoosePivot that chooses some element in the array A, and we use this
pivot to define the two sets–any A[i] less than the pivot is in the set of “smaller” values, and
any A[i] greater than the pivot is in the other part. We will figure out precisely how to specify
this subroutine ChoosePivot a bit later, after specifying the high-level algorithm structure.
The algorithm ChoosePivot does not affect the correctness of the algorithm as we will see in
Section 3.6. Rather, it only affects the runtime.

For clarity we’ll assume all elements are distinct from now on, but the idea generalizes easily.
Let n be the size of the array and assume we are trying to find the k-th element.

Algorithm 2: Select(A, n, k)

if n = 1 then
return A[1]

p ← ChoosePivot(A, n)
A< ← {A(i) | A(i) < p}
A> ← {A(i) | A(i) > p}
if |A<| = k − 1 then

return p

else if |A<| > k − 1 then
return Select(A<, |A<|, k)

else if |A<| < k − 1 then
return Select(A>, |A>|, k − |A<| − 1)

At each iteration, we use the element p to partition the array into two parts: all elements
smaller than the pivot and all elements larger than the pivot, which we denote A< and A>,
respectively.

Depending on what the size of the resulting sub-arrays are, the runtime can be different. For
example, if one of these sub-arrays is of size n − 1, at each iteration, we only decreased the
size of the problem by 1, resulting in total running time O(n2). If the array is split into two
equal parts, then the size of the problem at iteration reduces by half, resulting in a linear time
solution. (We assume ChoosePivot runs in O(n).)

Proposition 3. If the pivot p is chosen to be the minimum or maximum element, then Select
runs in Θ(n2) time.

Proof. At each iteration, the number of elements decreases by 1. Since running ChoosePivot
and creating A< and A> takes linear time, the recurrence for the runtime is T (n) = T (n −
1) + Θ(n). Expanding this,

T (n) ≤ c1n + c1(n − 1) + c1(n − 2) + ...+ c1 = c1n(n + 1)/2

3

and
T (n) ≥ c2n + c2(n − 1) + c2(n − 2) + ...+ c2 = c2n(n + 1)/2.

We conclude that T (n) = Θ(n2).

Proposition 4. If the pivot p is chosen to be the median element, then Select runs in O(n)
time.

Proof. Intuitively, the running time is linear since we remove half of the elements from
consideration each iteration. Formally, each recursive call is made on inputs of half the size,
namely, T (n) ≤ T (n/2)+cn. Expanding this, the runtime is T (n) ≤ cn+cn/2+cn/4+...+c ≤
2cn, which is O(n).

So how do we design ChoosePivot that chooses a pivot in linear time? In the following, we
describe three ideas.

3.1 Idea #1: Choose a random pivot

As we saw earlier, depending on the pivot chosen, the worst-case runtime can be O(n2) if we
are unlucky in the choice of the pivot at every iteration. As you might expect, it is extremely
unlikely to be this unlucky, and one can prove that the expected runtime is O(n) provided
the pivot is chosen uniformly at random from the set of elements of A. In practice, this
randomized algorithm is what is implemented, and the hidden constant in the O(n) runtime is
very small.

3.2 Idea #2: Choose a pivot that creates the most “balanced” split

Consider ChoosePivot that returns the pivot that creates the most “balanced” split, which
would be the median of the array. However, this is exactly selection problem we are trying to
solve, with k = n/2! As long as we do not know how to find the median in linear time, we
cannot use this procedure as ChoosePivot.

3.3 Idea #3: Find a pivot "close enough" to the median

Given a linear-time median algorithm, we can solve the selection problem in linear time
(and vice versa). Although ideally we would want to find the median, notice that as far as
correctness goes, there was nothing special about partitioning around the median. We could
use this same idea of partitioning and recursing on a smaller problem even if we partition
around an arbitrary element. To get a good runtime, however, we need to guarantee that
the subproblems get smaller quickly. In 1973, Blum, Floyd, Pratt, Rivest, and Tarjan came
up with the Median of Medians algorithm. It is similar to the previous algorithm, but rather
than partitioning around the exact median, uses a surrogate “median of medians". We update
ChoosePivot accordingly.

4

Algorithm 3: ChoosePivot(A, n)

Split A into g = ⌈n/5⌉ groups p1, . . . , pg
for i = 1 to g do
pi ← MergeSort(pi)

C ← {median of pi | i = 1, . . . , g}
p ← Select(C, g, g/2)
return p

What is this algorithm doing? First it divides A into segments of size 5. Within each group, it
finds the median by first sorting the elements with MergeSort. Recall that MergeSort sorts
in O(n log n) time. However, since each group has a constant number of elements, it takes
constant time to sort. Then it makes a recursive call to Select to find the median of C, the
median of medians. Intuitively, by partitioning around this value, we are able to find something
that is close to the true median for partitioning, yet is ‘easier’ to compute, because it is the
median of g = ⌈n/5⌉ elements rather than n. The last part is as before: once we have our
pivot element p, we split the array and recurse on the proper subproblem, or halt if we found
our answer.

We have devised a slightly complicated method to determine which element to partition
around, but the algorithm remains correct for the same reasons as before. So what is its
running time? As before, we’re going to show this by examining the size of the recursive
subproblems. As it turns out, by taking the median of medians approach, we have a guarantee
on how much smaller the problem gets each iteration. The guarantee is good enough to
achieve O(n) runtime.

3.3.1 Running Time

Lemma 5. |A<| ≤ 7n/10 + 5 and |A>| ≤ 7n/10 + 5.

Proof. p is the median of p1, · · · , pg. Because p is the median of g = ⌈n/5⌉ elements, the
medians of ⌈g/2⌉ − 1 groups pi are smaller than p. If p is larger than a group median, it is
larger than at least three elements in that group (the median and the smaller two numbers).
This applies to all groups except the remainder group, which might have fewer than 5 elements.
Accounting for the remainder group, p is greater than at least 3 · (⌈g/2⌉ − 2) elements of A.
By symmetry, p is less than at least the same number of elements.

Now,
|A>| = # of elements greater than p

≤ (n − 1)− 3 · (⌈g/2⌉ − 2)
= n + 5− 3 · ⌈g/2⌉
≤ n − 3n/10 + 5
= 7n/10 + 5.

(1)

5

By symmetry, |A<| ≤ 7n/10 + 5 as well.

Intuitively, we know that 60% of half of the groups are less than the pivot, which is 30% of
the total number of elements, n. Therefore, at most 70% of the elements are greater than
the pivot. Hence, |A>| ≈ 7n/10. We can make the same argument for |A<|.

The recursive call used to find the median of medians has input of size ⌈n/5⌉ ≤ n/5 + 1. The
other work in the algorithm takes linear time: constant time on each of ⌈n/5⌉ groups for
MergeSort (linear time total for that part), O(n) time scanning A to make A< and A>.

Thus, we can write the full recurrence for the runtime,

T (n) ≤

{
c1n + T (n/5 + 1) + T (7n/10 + 5) if n > 5

c2 if n ≤ 5.

How do we prove that T (n) = O(n)? The master theorem does not apply here. Instead, we
will prove this using the substitution method.

3.4 Solving the Recurrence of Select Using the Substitution Method

For simplicity, we consider the recurrence T (n) ≤ T (n/5) + T (7n/10) + cn instead of the
exact recurrence of Select.

To prove that T (n) = O(n), we guess:

T (n) ≤

{
d · n0 if n = n0
d · n if n > n0

For the base case, we pick n0 = 1 and use the standard assumption that T (1) = 1 ≤ d . For
the inductive hypothesis, we assume that our guess is correct for any n < k , and we prove our
guess for k . That is, consider d such that for all n0 ≤ n < k , T (n) ≤ dn.

To prove for n = k , we solve the following equation:

T (k) ≤ T (k/5) + T (7k/10) + ck ≤ dk/5 + 7dk/10 + ck ≤ dk

9/10d + c ≤ d

c ≤ d/10

d ≥ 10c

Therefore, we can choose d = max(1, 10c), which is a constant factor. The induction is
completed. By the definition of big-O, the recurrence runs in O(n) time.

6

3.5 Issues When Using the Substitution Method

Now we will try out an example where our guess is incorrect. Consider the recurrence
T (n) = 2T

(
n
2

)
+ n (similar to MergeSort). We will guess that the algorithm is linear.

T (n) ≤

{
d · n0 if n = n0
d · n if n > n0

We try the inductive step. We try to pick some d such that for all n ≥ n0,

n +

k∑
i=1

dg(ni) ≤ d · g(n)

n + 2 · d ·
n

2
≤ dn

n(1 + d) ≤ dn

n + dn ≤ dn

n < 0,

However, the above can never be true, and there is no choice of d that works! Thus our guess
was incorrect.

This time the guess was incorrect since MergeSort takes superlinear time. Sometimes, however,
the guess can be asymptotically correct but the induction might not work out. Consider for
instance T (n) ≤ 2T (n/2) + 1.

We know that the runtime is O(n) so let’s try to prove it with the substitution method. Let’s
guess that T (n) ≤ cn for all n ≥ n0.

First we do the induction step: We assume that T (n/2) ≤ cn/2 and consider T (n). We want
that 2 · cn/2 + 1 ≤ cn, that is, cn + 1 ≤ cn. However, this is impossible.

This doesn’t mean that T (n) is not O(n), but in this case we chose the wrong linear
function. We could guess instead that T (n) ≤ cn − 1. Now for the induction we get
2 · (cn/2−1)+1 = cn−1 which is true for all c . We can then choose the base case T (1) = 1.

3.6 Correctness of the Algorithm

Recall that the choice of pivot only affects the runtime, and not the correctness of the
algorithm. Here, we prove formally, by induction, that Select is correct. We will use strong
induction. That is, our inductive step will assume that the inductive hypothesis holds for all n
between 1 and i − 1, and then we’ll show that it holds for n = i .

Remark 6. You can also do this using regular induction with a slightly more complicated
inductive hypothesis; either way is fine.

7

Inductive Hypothesis (for n). When run on an array A of size n and an integer k ∈
{1, . . . , n}, Select returns the k-th smallest element of A.

Base Case (n = 1). When n = 1, the requirement k ∈ {1, . . . , n} means that k = 1; that
is, Select(A, k) is supposed to return the smallest element of A. This is precisely what the
pseudocode above does when |A| = 1, so this establishes the Inductive Hypothesis for n = 1.

Inductive Step. Let i ≥ 2, and suppose that the inductive hypothesis holds for all n with
1 ≤ n < i . Our goal is to show that it holds for n = i . That is, we would like to show that

When run on an array A of size i and an integer k ∈ {1, . . . , i}, Select(A, k)
returns the k-th smallest element of A.

Informally, we want to show that assuming that Select “works” on smaller arrays, then it
“works” on an array of length n.

We do this below:

Suppose that 1 ≤ k ≤ i , and that A is an array of length i . There are three cases to consider,
depending on p = ChoosePivot(A, i). Notice that in the pseudocode above, p is a value from
A, not an index. Let A<, A>, p be as in the pseudocode above.

• Case 1. Suppose that |A<| = k − 1. Then by the definition of A<, there are k − 1
elements of A that are smaller than p, so p must be the k-th smallest. In this case, we
return p, which is indeed the k-th smallest.

• Case 2. Suppose that |A<| > k −1. Then there are more than k −1 elements of A that
are smaller than p, and so in particular the k-th smallest element of A is the same as
the k-th smallest element of L. Next we will use the inductive hypothesis for n = |A<|,
which holds since |A<| < i . Since 1 ≤ k ≤ |A<|, the inductive hypothesis implies that
Select(A<, k) returns the k-th smallest element of A<. Thus, by returning this we are
also returning the k-th smallest element of A, as desired.

• Case 3. Suppose that |A<| < k − 1. Then there are fewer than k − 1 elements that
are less than p, which means that the k-th smallest element of A must be greater than
p; that is, it shows up in A>. Now, the k-th smallest element in A is the same as the
(k−|A<|−1)-st element in A>. To see this, notice that there are |A<|+1 elements smaller
than the k-th that do not show up in A>. Thus there are k − (|A<|+1) = k − |A<| − 1
elements in A> that are smaller than or equal to the k-th element. Now we want to
apply the inductive hypothesis for n = |A>|, which we can do since |A>| < i . Notice
that we have 1 ≤ k − |A<| − 1 ≤ |A>|; the first inequality holds because k > |A<|+ 1
by the definition of Case 3, and the second inequality holds because it is the same as
k ≤ |A<|+ |A>|+ 1 = n, which is true by assumption. Thus, the inductive hypothesis
implies that Select(A>, k −|A<|−1) returns the (k −|A<|−1)-st element of A>. Thus,
by returning this we are also returning the k-th smallest element of A, as desired.

8

Thus, in each of the three cases, Select(A, k) returns the k-th smallest element of A. This
establishes the inductive hypothesis for n = i .

Conclusion. By induction, the inductive hypothesis holds for all n ≥ 1. Thus, we conclude
that Select(A, k) returns the k-th smallest element of A on any array A, provided that
k ∈ {1, . . . , |A|}. That is, Select is correct, which is what we wanted to show.

9

	Introduction
	Selection
	Minimum Element

	Linear-Time Selection
	Idea #1: Choose a random pivot
	Idea #2: Choose a pivot that creates the most ``balanced'' split
	Idea #3: Find a pivot "close enough" to the median
	Running Time

	Solving the Recurrence of Select Using the Substitution Method
	Issues When Using the Substitution Method
	Correctness of the Algorithm

