Lecture 4

Median and Selection

Ed Participation

* Answering questions on Ed is a great way to learn.

* Bonus points for Ed participation!

Last Time:
Solving Recurrence Relations

* A recurrence relation expresses T(n) in terms of
T'(less than n)

* Forexample, T(n) =2-T (g) +11-n

* Two methods of solution:

1. Master theorem (aka, generalized “tree method”)
2. Substitution method (aka, guess and check)

The Master Theorem

e Supposea = 1,b > 1,and d are constants (that don’t
depend on n).

e SupposeT(n) =a-T (g) + 0(n4). Then

O(n%log(n)) if a = b?
T(n) =< O(n%) if a < b?
O(nlogs(@)) if g > b2

Three parameters:

a : number of subproblems

b : factor by which input size shrinks

d : need to do n9 work to create all the
subproblems and combine their solutions.

A powerful
theorem it is...

Jedi master Yoda

The Substitution Method

* Step 1: Guess what the answer is.

e Step 2: Prove by induction that your guess is correct.
* Step 3: Profit.

The plan for today

"4

More practice with the Substitution Method.
k-SELECT problem

k-SELECT solution

Return of the Substitution Method.

B W

A fun recurrence relation

°T(n)ST(5)+T()+nforn>10

* Basecase: T(n) =1when1<n<10

Apply here, the
Master Theorem does

Jedi master Yoda

The Substitution Method

* Step 1: Guess what the answer is.

e Step 2: Prove by induction that your guess is correct.
* Step 3: Profit.

Step 1: guess the answer

n m
T(n) < T(E) +T(1_O) + n forn > 10.

Basecase:T(n) = 1when1l <n <10

° Trying to Work baCkwa rds T(n) = n + T(n/5) + T(7n/10)
gets gross fast... -
. W 150] i o &
e Can ailso JUSt try It out. \\\\0
* (see Python notebook) g 0 T Q@&&

™ 30000 -

* Let'sguess O(n) and try to ==
prove it.

0 2000 4000 6000 8000 10000

Aside: Warning!

* It may be tempting to try to prove this with
the inductive hypothesis “T'(n) = 0(n)”

* But that doesn’t make sense!

* Formally, that’s the same as saying: tThilei? supposed
_ _ . —————toholdfora
* Inductive Hypothe5| specific n.

* Theredssame ny > 0 and some € > 0 so that,
Cloralln > g J(w < €.

\

But now we are letting n
be anything big enough!

* Instead, we should pick C first...

Step 2: prove our guess is right

We don’t know

n n
T(n)<T (—) +T (_) +nforn > 10. what C should be
> 10 yet! Let’s go
Basecase:T(n) = 1when1<n <10

through the proof
* Inductive Hypothesis: T(n) < Cn leaving it as “C”

and then figure

* Basecase: 1 =T(n) <Cnforalll1 <n <10 outwhat works..

* Inductive step:
e Let k> 10. Assume that the IH holds for

k 7k
) T(k) Sk+T (g) +7 (E) Whatever we
Sk+C-(E)+C-(ﬂ) choose C to be, it
C > 7C 10 should have C=>1
=k+-k+k
< Ck ?5? 4/10// Let’s solve for C and make this true!
- o C = 10 works.

* (aka, want to show that IH holds for n=k). (write out)

nsothatl <n < k.

* Conclusion:

* Thereissome Csothatforalln >1,T(n) < Cn
* By the definition of big-Oh, T(n) = O(n).

n mn
T(n) < n+T(—) +T<—) forn > 10.

Ste p 3 P rOfIt Base case: T(n)5= 1 whle(:l 1<n<10

(Aka, pretend we knew this all along).

Theorem: T(n) = 0(n)
Proof:

* Inductive Hypothesis: T(n) < 10n.
*Basecase: 1 =T(n) < 10nforalll <n <10

* Inductive step:
e Let k> 10. Assume that the IH holds forallnsothat1 < n < k.

. T(k)Sk+T(§)+T(%)

<k+10- () +10- ()
= k + 2k + 7k = 10k

* Thus, IH holds for n=k.

e Conclusion:
* Foralln > 1,T(n) < 10n
* Then, T(n) = O(n), using the definition of big-Oh withny, = 1,¢c = 10.

What have we |learned?

 The substitution method can work when the
master theorem doesn’t.
* For example, with different-sized sub-problems.

e Step 1: generate a guess
e Throw the kitchen sink at it.

* Step 2: try to prove that your guess is correct

* You may have to leave some constants unspecified till
the end — then see what they need to be for the proof to
work!!

* Step 3: profit
* Pretend you didn’t do Steps 1 and 2 and write down a
nice proof.

The Plan

More practice with the Substitution Method.
k-SELECT problem
k-SELECT solution
Return of the Substitution Method.

B W

For today, assume

The k-SELECT problem all arrays have

. distinct elements.
from your pre-lecture exercise

A is an array of size n, kisin {1,...,n}
* SELECT(A, k):

e Return the k-th smallest element of A.

7falsfefs]sfo]re

* SELECT(A,1)=1 « SELECT(A, 1) = MIN(A) foors and etings!
« SELECT(A,2)=3 * SELECT(A, n/2) = MEDIAN(A)
« SELECT(A,3)=4 + SELECT(A, n) = MAX(A) L

SELECT(A, 8) = 14

Note that the definition of Select is 1-indexed...

On your pre-lecture exercise...

An O(nlog(n))-time algorithm

* SELECT(A, k):

o A — It’s k-1 and not k since my
A Mergesorb pseudocode is 0-indexed and
* return A[k-1]

the problem is 1-indexed...

* Running time is O(n log(n)).
e So that’s the benchmark....

Show that you can’t

Can we do better? Jo bettor than O(n)

We’re hoping to get O(n) @

Goal: An O(n)-time algorithm

* On your pre-lecture exercise: SELECT(A, 1).
e (aka, MIN(A))
* MIN(A):
*ret=00
* Fori=0, ..., n-1:

o |f A[i] < ret: h . = This loop runs O(n) times
. Thi is O(1
. ret =A[I] is stuff is O(1)

* Return ret

L

* Time O(n). Yay!

Also on your pre-lecture exercise

How about SELECT(A,2)?

* SELECT2(A):

ret = oo
minSoFar = oo
For i=0, .., n-1:

* If Afi] <ret and A[i] < minSoFar:
* ret = minSoFar
* minSoFar = A[i]
* Elseif Afi] < ret and A[i] >= minSoFar:
e ret =A[i]
Return ret

(The actual algorithm here is
not very important because
this won’t end up being a
very good idea...)

Still O(n)
SO FAR SO GOOD.

SELECT(A, n/2) aka MEDIAN(A)?

* MEDIAN(A):
° ret=00
* minSoFar = oo
e secondMinSoFar = o
e thirdMinSoFar = o
e fourthMinSoFar = oo

* This is not a good idea for large k (like n/2 or n).

 Basically, this is just going to turn into something like
INSERTIONSORT...and that was O(n?).

The Plan

More practice with the Substitution Method.
k-SELECT problem
k-SELECT solution
Return of the Substitution Method.

B W

|dea: divide and conquer!

Say we want to

maseiccting [918]3[6
‘ How about

First, pick a “pivot.” this pivot?

We’'ll see how to do
this later.

This PARTITION step takes
Next, partition the array into time O(n). (Notice that

. we don’t sort each half).
“bigger than 6” or “less than 6”)

L = array with things R = array with things
smaller than A[pivot] larger than A[pivot]

|dea: divide and conquer!

Say we want to
find SELECT(A, k)

First, pick a “pivot.”
We’'ll see how to do
this later.

Next, partition the array into
“bigger than 6” or “less than 6”

L = array with things
smaller than A[pivot]

How about
this pivot?

This PARTITION step takes
time O(n). (Notice that
we don’t sort each half).

R = array with things
larger than A[pivot]

ldea continued...

Say we want to
find SELECT(A, k)

pivot

L = array with things R = array with things
smaller than A[pivot] larger than A[pivot]

e Ifk=5=len(L)+ 1:
 We should return A[pivot]

e Ifk<5: This suggests a
 We should return SELECT(L, k) recursive algorithm
 Ifk>5:

(still need to figure out

 We should return SELECT(R, k — 5) how to pick the pivot...)

* getPivot (A7) returns some pivot for us.

Pse u d OCOd e How?? We’ll see later...

e Partition (A, p) splitsup Ainto L, A[p], R.
e See Lecture 4 Python notebook for code

* Select(AKk): Base Case: If len(A) =0(1),
* Iflen(A) <=50: then any sorting algorithm
« A= MergeSort(A) runs in time O(1).
e Return A[k-1]
* p=getPivot(A)
e L, pivotVal, R = Partition(A,p)

e iflen(L) == k-1: Case 1: We got lucky and found
e return pivotVaI exactly the k’th smallest value!
e Else if len(L) > k-1: Case 2: The k’th smallest value
e return Select(L, k) is in the first part of the list
e Else if len(L) < k-1: Case 3: The k’th smallest value

* return Select(R, k—len(L)-1) is in the second part of the list

Convince yourself that
Select is correct!

Does it work?

* Check out the Python notebook for Lecture 4,
which implements this with a bunch of different
pivot-selection methods.

e Seems to work!

* Check out the lecture notes for a rigorous proof
based on induction that this works, with any pivot-
choosing mechanism.

* It provably works!

* Also, this is a good example of proving that a recursive
algorithm is correct.

What is the running time?

Assuming we pick the pivot in time O(n)...

fT(len(L)) + 0(n) len(L) >k —1
*T(n) = {T(len(R)) +0(n) len(L) <k —1
L 0(n) len(L) =k -1

 What are len(L) and len(R)?

* That depends on how we pick the pivot...

What would be a “good” pivot?

_ _ What would be a “bad” pivot?
Think: one minute

Share: (wait) one minute "

The best way would be to always pick the pivot so that

len(L) = k-1. But say we don’t have control over k, just Think-Share Terrapins
over how we pick the pivot.

EXIT 211 A

The ideal pivot

* We split the input exactly in half:
* len(L) = len(R) = (n-1)/2

What happens in that case?

Think: one minute
" Share: (wait) one minute

In case it’s helpful...
e SupposeT(n) =a-T (%) + 0(n%). Then

}
0(n?log(n)) ifa = b?
T(n) = { 0(n%) if a < b
LO(‘nlogb(‘“)) if a > b

EXIT 211 A

The ideal pivot

Apply here, the Master

* We split the input exactly in half: UGS L O
Making unsubstantiated
¢ Ien(L) = Ien(R) = (n-1)/2 assumptions about

problem sizes, we are.

* Let’s pretend that’s the case and use the
Master Theorem!

e T(n) < T(g) + 0(n)

Jedi master Yoda

* Soa=1,b=2,d=1 » Suppose T(n) =a- T(%) +0(n?). Then

* T(n) < O(nd) = 0(n) fO(nd log(n)) ifa = b?
T(n) = { 0(n%) if a < b
That would be great! O(nlo8s@) ifq > b

\

The worst pivot

 Say our choice of pivot doesn’t depend on A.

* A bad guy who knows what pivots we will choose
gets to come up with A.

EEINEEERE

pivot

The distinction matters!

Selection

= SELECT with random pivot
- MergeSort SELECT
SELECT with worst pivot

~J
o

For this one | chose the worst

8 & 8 8

E possible pivot. Looks like O(n?).
DY)
E
=
20 -
i This one is a random
| pivot, so it splits the
0 - e array about in half.
T T T T T T T Looks fast!
0 500 1000 1500 2000 2500 300 J5UU

n

See Lecture 4 Python notebook for code that generated this picture.

How do we pick a good pivot?

 Randomly?
* That works well if there’s no bad guy.

e But if there is a bad guy who gets to see our pivot
choices, that’s just as bad as the worst-case pivot.

Aside:

* In practice, there is often no bad guy. In
that case, just pick a random pivot and it
works really well!

<_UTOPIA 8535kn |

* (More on this next lecture)

How do we pick a good pivot?

* For today, let’s assume there’s this bad guy.

* Reasons:
* This gives us a very strong guarantee

 We'll get to see a really clever algorithm.
* Necessarily it will look at A to pick the pivot.

* We'll get to use the substitution method.

The Plan

4.

More practice with the Substitution Method.
k-SELECT problem
k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

Return of the Substitution Method.

Approach

* First, we'll figure out what the ideal pivot would be.
* But we won’t be able to get it.

* Then, we’'ll figure out what a pretty good pivot would be.
e But we still won’t know how to get it.

* Finally, we will see how to get our pretty good pivot!
* And then we will celebrate.

How do we pick our ideal pivot?

 We'd like to live in the ideal world.

EXIT 211 A

* Pick the pivot to divide the input in half.

* Aka, pick the median!
» Aka, pick SELECT(A, n/2)!

How about a good enough pivot?

e We'd like to approximate the ideal world.

o 1

/|

* Pick the pivot to divide the input about in half!
* Maybe this is easier!

We still don’t know that we
can get such a pivot, but at
least it gives us a goal and a

A good enough pivot directon to pursue

* We split the input not quite in half:
* 3n/10 < len(L) < 7n/10
* 3n/10 < len(R) < 7n/10

Lucky the lackadaisical lemur

* If we could do that (let’s say, in time O(n)), the Master
Theorem would say:
e T(n) < T()+0(n)

CSoazlbo10/7,d=1 PPeseT@=a-T()+0(n). Then

[O(n%log(n)) if a = b
* T(n) < O(nd) =0(n) T(n) =<{ O(n%) if a < b?

O(n'°&s(@)) if g > b?
STILL GOOD!

Goal

* Efficiently pick the pivot so that

n pivot

L = array with things R = array with things
smaller than A[pivot] larger than A[pivot]
3n n 3n n
— < len(L) < — — < len(R) < —

10 10 10 10

Another divide-and-conquer alg!
* We can’t solve SELECT(A,n/2) (yet)

e But we can divide and conquer and solve SELECT(B,m/2) for smaller
values of m (where len(B) = m).

* Lemma®*: The median of sub-medians is close to the median.

Ideal pivot
What we’ll use as the pivot ~——_ medianof _ median ofthe
sub-medians whole thing

sub-median syb-median sub-median sub-median sub-median

A A A A A
[1 I\ | | |

[1 []

*we will make this a bit more precise.

How to pick the pivot
e CHOOSEPIVOT(A):

* Split Aintom =[ﬂ groups, of size <=5 each.

* Fori=1, .., m:
* Find the median within the i"th group, call it p;

* p = SELECT([pl, 27 p3/ ceey pm]) m/2)
 return the index o

in A

Why 5 and not 3?
See the concept
check questions!

This takes time O(1) for each group, since each group

8
has size 5. So that’s O(m)=0(n) total in the for loop.
4
1|89 |3]15]5]|09 34|1zz15201513245'12115223
6
Pivot is SELECT(| &8 @ 4 6 112 3)=6: "
6 |
1|89 |3|15]5]|09 34|1zz1520151324_112115223
PARTITION around that 6: 6
13|51 34|z z|4||135 8|9 15| 9 |12|20]15 131z|15|zz

This partis L

This part is R: it’s almost the same size as L.

CLAIM: this works

divides the array approximately in half

* Empirically (see Lecture 4 Python Notebook):

Pivot Selection Algs

160 - B Fancy pivot
B Random pivot

0 20 40 60 80 100
index returned (out of n=101)

CLAIM: this works

divides the array approximately in half

* Formally, we will prove (later):

Lemma: If we choose the pivots like this, then

<™y
— 10
and

Rl < 245
=710

Sanity Check

|L|S7—n+5and |R|S7—n+5
10 10

Pivot Selection Algs

160 - mmE Fancy pivot

Random pivot
140 - q

5 B
o o

frequency
3

20 A

0 40 60 100
dex returned (out of n=101

That’s this window

In practice (on
randomly chosen
arrays) it looks
even better!

But this is a
worst-case
bound.

How about the running time?

e Suppose the Lemma is true. (It is).
m mn
* |L| SE+5and IR S1—0+5

* Recurrence relation:
T(n) <7

Think: 1 minute
Share: (wait) 1 minute

& -

* Lemma says that |L]| S%l+ 5and |R| < Z—z+ 5

e Suppose Partition runsintime O(n)

PS e U d OCO d e e Come up with a recurrence relation for T(n), the

running time of Select, using the choosePivot

algorithm we just described.

e Select(Ak): Base Case: If len(A) = O(1),
* If len(A) <= 50: then any sorting algorithm
. A= MergeSort(A) runs in time O(1).
* Return Alk-1]
* p=choosePivot(A)
e L, pivotVal, R = Partition(A,p)

e iflen(L) == k-1: Case 1: We got lucky and found
e return pivotVaI exactly the k’th smallest value!
e Else if len(L) > k-1: Case 2: The k’th smallest value
e return Select(L, k) is in the first part of the list
e Else if len(L) < k-1: Case 3: The k’th smallest value

* return Select(R, k—len(L)-1) is in the second part of the list

How about the running time?

e Suppose the Lemma is true. (It is).
m mn
* |L| SE+5and IR S1—0+5

* Recurrence relation:

T(n) < T(%) +T(Z—Z) + 0(n)

The call to CHOOSEPIVOT makes \

Outside of CHOOSEPIVOT, there’s at most one
recursive call to SELECT on array of size 7n/10 + 5.

one further recursive call to
SELECT on an array of size n/5.

We’re going to drop the “+5” for convenience,
but it does not change the final answer. Why?
Hint: Define T’(n) := T(n+1000) and write recurrence for T’

Siggi the Studious Stork

The Plan

4.

More practice with the Substitution Method.
k-SELECT problem
k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

Return of the Substitution Method. -

This sounds like a job for...

The Substitution Method!

Step 1: generate a guess
Step 2: try to prove that your guess is correct

Step 3: profit

Tm)<T (g) + T (ZO) + 0(n)

That’s convenient! We did this at the

beginni f lecture! Technically we only did it for
eginning of lecture!

T(n)<T()+T()+n
not when the last term

Conclusion: T(n) = 0(n) has a big-Oh..

Plucky the Pedantic Penguin

Recap of approach

* First, we figured out what the ideal pivot would be.
* Find the median

* Then, we figured out what a pretty good pivot would be.
* An approximate median

* Finally, we saw how to get our pretty good pivot!
* Median of medians and divide and conquer!
 Hooray!

In practice?

* With not-very-slick implementation, our fancy version of SELECT s

worse than the MergeSort-based SELECT ®
e But O(n) is better than O(n log(n))! How can that be?
* What’s the constant in front of the n in our proof? 20? 30?

* On non-adversarial inputs, random pivot choice is much better.

Moral:

ivot Selection
Just pick d random pV : :
us It expe ct ——— SELECT with random pivot
if you don’t o] SELECT with (not-so-slick impl. of) fancy pivot
nefarious arrays- —-- MergeSort SELECT
SELECT with worst pivot
30 v
Optimize the implementation of E /,/""
. . v
SELECT (with the fancy pivot). E 201 PR
Can you beat MergeSort? A,-'”/
10 A ...'p-.' '/'/
oot
.
- —
o] ==

Siggi the Studious Stork L

What have we learned?
Pending the Lemma

* It is possible to solve SELECT in time O(n).
 Divide and conquer!

* If you want a deterministic algorithm or expect that
a bad guy will be picking the list, choose a pivot
cleverly.

* More divide and conquer!

* If you don’t expect that a bad guy will be picking
the list, in practice it’s better just to pick a random
pivot.

The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

4. Return of the Substitution Method.

5. (If time) Proof of that Lemma.

If time, back to the Lemma

* Lemma: If L and R are as in the algorithm SELECT
given above, then

<™y
=10

and

Rl < 245
=710

* We will see a proof by picture.

 See lecture notes for proof by proof.

Proof by picture

1 5 2 3 6
8 18 10 13 7
9 4 7 70 17
3 6 12 4 22
15 35 11 2

|

m

Say these are our m = [n/5] sub-arrays of size at most 5.

Proof by picture

1 4 2 2
3 5 7 3
8 6 10 4
9 18 11 13
15 35 12 70
!
m

In our head, let’s sort them.

Then find medians.

Proof by picture

2 4 1 2
s s [e] 3 |7
4 6 7 8 10
13 18 17 9 11
70 35 22 15 12
|
!

Then let’s sort them by the median

Proof by picture

2 4 1 2
3 5 6 3 7
4 6 7 8 10
13 18 17 9 11
70 35 22 15 12
!
m

The median of the medians is 7. That’s our pivot!

We will show that lots of elements are
smaller than the pivot, hence not too
many are larger than the pivot.

Proof by picture

2 4 1 2
3 5 6 3 7
4 6 7 8 10
13 18 17 9 11
70 35 22 15 12
!
m

How many elements are SMALLER than the pivot?

Proof by picture

2 4 1 2
3 5 6 3 7
4 6 7 8 10
13 18 17 9 11
70 35 22 15 12
!
m

At least these ones: everything above and to the left.

P o Qf by p | cture 3- ([?] — 1) of these, but

then one of them could have
been the “leftovers” group.

How many of those are there?

at least 3 - ([ﬂ — 2)

|2 4 1 2
3 5 6 3 7
4 6 7 8 10
13 18 17 9 11
70 35 22 15 12
!
m

So how many are LARGER than the pivot? At most...

Proof by picture

(derivation
on board)

n-1-3((2-2)

<— 45
_10+

2 4 1 2
3 5 6 3 7
4 6 7 8 10
13 18 17 9 11
70 35 22 15 12
~_
I'm

Remember

n|

That was one part of the l[emma

* Lemma: If L and R are as in the algorithm SELECT
given above, then

<™y
=10

and
Rl <245
— 10

The other part is exactly the same.

The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

4. Return of the Substitution Method.

5. (If time) Proof of that Lemma.

Recap -

Recap

e Substitution method can work when the master
theorem doesn’t.

* One place we needed it was for SELECT.
 Which we can do in time O(n)!

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 448—461 (1973)

Time Bounds for Selection*

MANUEL Brum, RoBERT W. FLOYD, VAUGHAN PRATT,
RonaLD L. Rivest, AND ROBERT E. TARjAN

Department of Computer Science, Stanford University, Stanford, California 94305
Received November 14, 1972

The number of comparisons required to select the i-th smallest of # numbers is shown
to be at most a linear function of # by analysis of a new selection algorithm—PICK.
Specifically, no more than 5.4305 n comparisons are ever required. This bound 1s
improved for extreme values of 7, and a new lower bound on the requisite number
of comparisons is also proved.

Next time

* Randomized algorithms and QuickSort!

BEFORE next time

* Pre-lecture 5 exercise
* Remember probability theory?
* The pre-lecture exercise will jog your memory.

