
CS 161 (Stanford, Winter 2026) Lecture 5
Adapted from Virginia Williams’ lecture notes. Additional credits go to Sam Keller, Seth
Hildick-Smith, Gregory Valiant.
Please direct all typos and mistakes to Ellen Vitercik and Moses Charikar.

Randomized Algorithms and Quicksort
Today we will study another sorting algorithm: Quicksort, which was invented in 1959 by Tony
Hoare. You may wonder why we want to study a new sorting algorithm. We have already
studied MergeSort, which we showed to perform significantly better than the trivial O(n2)
algorithm. While MergeSort achieves an O(n log n) worst-case asymptotic bound, in practice,
there are a number of implementation details about MergeSort that make it tricky to achieve
high performance. Quicksort is an alternative algorithm, which is simpler to implement in
practice. Quicksort will also use a divide and conquer strategy but will use randomization to
improve the performance of the algortithm in expectation. Java, Unix, and C stdlib all have
implementations of Quicksort as one of their built-in sorting routines.

1 Quicksort Overview

As in all sorting algorithms, we start with an array A of n numbers; again we assume without
loss of generality that the numbers are distinct1. Quicksort is very similar to the Select
algorithm we studied last lecture. The description of Quicksort is the following:

if length(A) ≤ 1 then
return A // It is trivially sorted

else
Pick some element x ← A[i]. // We call x the pivot.
Split A into A< = {A[i] | A[i] < x} and A> = {A[i] | A[i] > x}.
Rearrange A into [A<, x, A>].
Recurse on A< and A>.

The above steps define a “partition” function on A. The partition function of Quicksort can
vary depending on how the pivot is chosen and also on the implementation. Quicksort is
often used in practice because we can implement this step in linear time, and with very small
constant factors. In addition, the rearrangement (Step 3) can be done in-place, rather than
making several copies of the array (as is done in MergeSort). In these notes we will not
describe the details of an in-place implementation, but the pseudocode can be found in CLRS.

1What does it mean to say that we can assume something without loss of generality? Why can we make this
assumption without loss of generality in this proof?

1

2 Speculation on the Runtime

The performance of Quicksort depends on which element is chosen as the pivot. Assume that
we choose the k th smallest element; then |A<| = k − 1, |A>| = n − k .

This allows us to write a recurrence; let T (n) be the runtime of Quicksort on an n-element
array. We know the partition step takes O(n) time; therefore the recurrence is

T (n) ≤ cn + T (k − 1) + T (n − k).

For the worst pivot choice (the maximum or minimum element in the array2), the runtime
satisfies the recurrence T (n) = T (n − 1) +O(n); hence T (n) = O(n2).

One way that seems optimal to define the partition function is to pick the median as the
pivot. In the above recurrence this would mean that k = ⌈n

2
⌉. We showed in the previous

lecture that the algorithm Select can find the median element in linear time. Therefore the
recurrence becomes T (n) ≤ cn + 2T (n

2
). This is exactly the same recurrence as MergeSort,

which means that this algorithm is guaranteed to run in O(n log n) time.

Unfortunately, the median selection algorithm is not practical; while it runs in linear time, it
has much larger constant factors than we would like. To improve it, we will explore some
alternative methods for choosing a pivot.

We leave the proof of correctness of Quicksort as an exercise to the reader (hint: use
induction).

2.1 Random Pivot Selection

Our discussion so far suggests two approaches to pivot selection: (1) We could pick an
arbitrary element as a pivot. This is super simple and takes O(1) time (good), but the worst
case running time of the resulting algorithm would be O(n2) (bad). (2) We could pick the
median as the pivot. This takes O(n) time and is somewhat complicated (bad), but gives a
worst case running time of O(n log n) (good). Can we get the best of both worlds?

One method of “defending” against making a bad pivot choice is to choose a random element
as the pivot. We observe that it is unlikely that the random element will be either the
median (best-case) or the maximum or minimum (worst-case). Note that we have a uniform
distribution over the n order statistics of the array (this is a fancy way of saying: for every
1 ≤ i ≤ n we pick the i-th highest element with the same probability 1

n
). Let’s pause for a

moment. This is the first time in this course that we have encountered an algorithm that uses
randomness in its execution. Such an algorithm (that “flips coins” and takes actions based on
the outcome of these coin flips) is called a randomized algorithm. How do we analyze a
randomized algorithm?

2Why are these the worst pivot choices?

2

3 Worst-Case Analysis

In this section we will derive a bound on the worst-case running time of Quicksort. If we
consider the worst random choice of pivot at each step, the running time will be Θ(n2). This
flavor of worst-case analysis (which gets an upper bound on the running time over all possible
possible choices of pivots) is no different from the worst case analysis of the algorithm which
picks an arbitrary pivot at every step. We are thus interested in what the running time of
Quicksort is on average over all possible choices of the pivots. We should emphasize an
important point: We still consider the running time for a worst-case input, and average
only over the random choices of the algorithm (which is different from averaging over all
possible inputs). Put differently, our analysis will guarantee that for any input, the expected
running time will be small. We formalize the idea of averaging over the random choices of
the algorithm by considering the running time of the algorithm on an input I as a random
variable and bounding the expectation of that random variable.

Proposition 1. For every input array of size n, the expected running time of Quicksort is
O(n log n).

Recall that a random variable is a function that maps every element in the sample space to a
real number. In the case of rolling a die, the real number (or value of the point in the sample
space) would be the number on the top of the die. Here the sample space is the set of all
possible choices of pivots, and an example for a random variable can be the running time of
Quicksort on a specific input I.

Denote by zi the i-th element in the sorted array. For each i , j , we define a random variable
Xi ,j(σ) to be the number of times zi and zj are compared for a given series of pivot choices
σ. What are the possible values for Xi ,j(σ)? It can be 0 if zi and zj are not compared. Note
that all comparisons are with the pivot, and that the pivot is not included in the elements
of the arrays in the recursive calls. If zi and zj are compared, consider the first time that
this happens: one of them must be the pivot at this stage and this pivot is excluded from
the subarrays that recursive calls operate on. Thus, no two elements are compared twice.
Therefore, Xi ,j(σ) ∈ {0, 1}.

Our goal is to compute the expected number of comparisons that Quicksort makes. Recall
the definition of expectation:

E[X] =
∑
σ

P[σ]X(σ) =
∑
k

k P[X = k].

Unfortunately for us, this definition does not really give us any clue about how we can actually
go about computing the expectation of the complicated random variable that we have at
hand, i.e. the number of comparisons made by Quicksort. Can you imagine trying to figure
out the probability that Quicksort actually performs exactly k comparisons? We don’t have
the foggiest idea how we might do that. If you do, please let us know!

Luckily for us, there is way around this. An important property of expectation is linearity of

3

expectation. For any random variables X1, . . . , Xn:

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi].

This is a really simple to state, but amazingly useful property that makes the computation
of expectations of seemingly complicated random variables much much easier. It is worth
internalizing this technique that we are about to apply for analyzing the expected number of
comparisons that Quicksort performs.

We start with computing the expected value of Xi ,j . These variables are indicator random
variables, which take the value 1 if some event happens, and 0 otherwise. The expected value
is

E[Xi ,j] = P[Xi ,j = 1] · 1 + P[Xi ,j = 0] · 0
= P[Xi ,j = 1]

Let C(σ) be the total number of comparisons made by Quicksort for a given set of pivot
choices σ:

C(σ) =

n∑
i=1

n∑
j=i+1

Xi ,j(σ).

We wish to compute E[C] to get the expected number of comparisons made by Quicksort for
an input array of size n.

E[C] = E

[
n∑
i=1

n∑
j=i+1

Xi ,j(σ)

]

=

n∑
i=1

E

[
n∑

j=i+1

Xi ,j(σ)

]

=

n∑
i=1

n∑
j=i+1

P[zi , zj are compared]

Now we find P[zi , zj are compared]. Apriori, this seems difficult to do, but it turns out
that there is a really elegant way to analyze this. Note that each element in the array
(except the pivot) is compared to the pivot at each level of the recurrence. To analyze
P[zi , zj are compared], examine the portion of the array [zi, zj]. After the array is split using
a pivot from [zi, zj], zi and zj can no longer be compared. Hence, zi and zj are compared
only when from the portion of the array [zi, zj], either zi or zj is the first one picked as the
pivot. So,

P[zi , zj compared] = P[zi or zj is the first pivot picked from [zi, zj]]

=
1

j − i + 1 +
1

j − i + 1

=
2

j − i + 1

4

Make sure you are able to explain the second line in the calculation above.

We return to the expected value of C:

E[C] =
n∑
i=1

n∑
j=i+1

P[zi , zj are compared]

=

n∑
i=1

n∑
j=i+1

2

j − i + 1

Note that for a fixed i ,

n∑
j=i+1

1

j − i + 1 =
1

2
+
1

3
+ . . .+

1

n − i + 1

≤
1

2
+
1

3
+ . . .+

1

n

And using
∑n
k=2

1
k
≤ ln n, we get that

E[C] = E[
n∑
i=1

n∑
j=i+1

Xi ,j(σ)]

=

n∑
i=1

n∑
j=i+1

2

j − i + 1

≤ 2n ln n

Thus, the expected number of comparisons made by Quicksort is no greater than 2n ln n =
O(n log n). To complete the proof, we have to show that the running time is dominated by
the number of comparisons. Note that in each recursive call to Quicksort on an array of size
k, the algorithm performs k − 1 comparisons in order to split the array, and the amount of
work done is O(k). In addition, Quicksort will be called on single-element arrays at most once
for each element in the original array, so the total running time of Quicksort is O(C + n). In
conclusion, the expected running time of Quicksort on worst-case input is O(n log n).

3.1 Alternative Proof

Here we provide an alternative method for bounding the expected number of comparisons.
Let T (n) be the expected number of comparisons performed by Quicksort on an input of size
n. In general, if the pivot is chosen to be the i-th order statistic of the input array (i.e. the
ith largest element),

T (n) = n − 1 + T (i − 1) + T (n − i).

5

where we define T (0) = 0. Each of the n possible choices of i are equally likely. Thus, the
expected number of comparisons is:

T (n) = n − 1 +
1

n

n∑
i=1

(T (i − 1) + T (n − i))

= n − 1 +
2

n

n−1∑
i=1

(T (i))

Did you catch this minor detail: why does the second summation go from 1 through n − 1,
while on the previous line, the summation goes from 1 through n?

Continuing the calculation, we will use two facts:

1.
∑n−1
i=1 f (i) ≤

∫ n
1
f (x)dx for an increasing function f .

(How would you prove this? This gives us a way to upper-bound discrete sums by
integrals of continuous functions – a nice trick to have in your toolkit that we will use
below. If you understand this, what is the corresponding statement to lower-bound a
discrete sum by an integral? What if f was a decreasing function of n? It is good to
get into the habit of asking yourself such questions to test your understanding.)

2.
∫
2x ln xdx = x2 ln x − x2

2
+ C.

Now we show that T (n) ≤ 2n ln n by (strong) induction.

Inductive Hypothesis. T (i) ≤ 2i ln i .

Base case (i = 1) An array of size 1 requires no comparisons. Thus, T (1) = 0 and the
inductive hypothesis is true for i = 1.

Inductive step. We will show that if the inductive hypothesis is true for all i ≤ k − 1 then
the inductive hypothesis is also true for i = k .

6

Let’s bound T (k):

T (k) = k − 1 +
2

k

k−1∑
i=1

T (i)

≤ k − 1 +
2

k

k−1∑
i=1

2i ln i

≤ k − 1 +
2

k

∫ k

1

(2x ln x)dx

= k − 1 +
2

k

[
k2 ln k −

k2

2
+
1

2

]
= 2k ln k + k − 1− k +

1

k

= 2k ln k − 1 +
1

k
≤ 2k ln k.

Thus the inductive hypothesis is true for i = k . This establishes the inductive step.

Inductive step. By induction, we have proved that T (i) ≤ 2i ln i for all i . Hence T (n) ≤
2n ln n. This concludes the proof.

7

	Quicksort Overview
	Speculation on the Runtime
	Random Pivot Selection

	Worst-Case Analysis
	Alternative Proof

