
Lecture 5
Randomized algorithms and QuickSort



Announcements
• Homework 2 is due today by midnight
• Homework 3 will be released today (still solo)

• This Friday we will have an EthiCS lecture taught by 
Justin Shin 
(same place/time as regular lecture)

Friday Jan 23, 1:30-2:50pm (STLC 111)



Last time
• We saw a divide-and-conquer algorithm to solve the 
Select problem in time O(n) in the worst-case.
• It all came down to picking the pivot…

We choose a pivot cleverly

We choose a pivot randomly.



Randomized algorithms
• We make some random choices during the algorithm.
• We hope the algorithm works.
• We hope the algorithm is fast.

E.g., Select with a random pivot 
is a randomized algorithm.
• Always works (aka, is correct).
• Probably fast.

For today we will look at 
algorithms that always work 
and are probably fast. These 
are called “Las Vegas”.



Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know.  (in contrast with BogoSort…)



How do we measure the runtime 
of a randomized algorithm?

Scenario 1
1. You publish your algorithm.
2. Bad guy picks the input.

3. You run your randomized 
algorithm.

Scenario 2
1. You publish your algorithm.
2. Bad guy picks the input.

3. Bad guy chooses the 
randomness (fixes the dice) 
and runs your algorithm.

• In Scenario 1, the running time is a random variable.
• It makes sense to talk about expected running time.

• In Scenario 2, the running time is not random.
• We call this the worst-case running time of the randomized algorithm.



Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know.  (in contrast with BogoSort…)



From your pre-lecture exercise:

BogoSort
• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

• Let 𝑋! =	$
1	if	A	is	sorted	after	iteration	i

0	otherwise

• 𝐸[𝑋!] =
"
#!

• 𝐸 number	of	iterations	until	A	is	sorted = 𝑛!	

Assume A has 
distinct entries

Suppose that you can draw a random 
integer in {1,…,n} in time O(1).  How 

would you randomly permute an array 
in-place in time O(n)?  

Ollie the over-achieving ostrich



From your pre-lecture exercise:

BogoSort
• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

• Let 𝑋! =	$
1 if	A	is	sorted	after	iteration	i
0 otherwise

• 𝐸[𝑋!] =
"
#!

• 𝐸 number	of	iterations	until	A	is	sorted = 𝑛!	

Assume A has 
distinct entries

Suppose that you can draw a random 
integer in {1,…,n} in time O(1).  How 

would you randomly permute an array 
in-place in time O(n)?  

Ollie the over-achieving ostrich



Expected Running time of BogoSort

E[ running time on a list of length n ]
   = E[ (number of iterations) * (time per iteration) ]
   
   = (time per iteration) * E[number of iterations]
  
   = 𝑂 𝑛 ⋅ 𝑛!
   
   = REALLY REALLY BIG.

This isn’t random, so we can pull 
it out of the expectation.

We just computed 
this.  It’s n!.

This is O(n) (to permute 
and then check if sorted)



Worst-case running time of BogoSort?

• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

Think-Share Terrapins!



• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

Think-Share Terrapins!

Infinite!

Worst-case running time of BogoSort?



What have we learned?

• Expected running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. You get to roll the dice.

• Worst-case running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. Bad guy gets to “roll” the dice.

• Don’t use BogoSort.



Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know.  (in contrast with BogoSort…)



a better randomized algorithm: 
QuickSort

• Expected runtime O(nlog(n)).

• Worst-case runtime O(n2).

• In practice works great!

QuickSort uses very similar methods to the Select algorithm
we saw last time. Can you modify the QuickSort algorithm
we’ll learn today to make sure its worst-case runtime is O(nlog(n))?

Siggi the Studious Stork



Quicksort

7 6 3 5 1 2 4

We want to sort 
this array.

First, pick a “pivot.”
Do it at random.

random pivot!
Next, partition the array into 
“bigger than 5” or “less than 5”

7 6 3

This PARTITION step 
takes time O(n).  
(Notice that we 

don’t sort each half).
[same as in SELECT]

5 1 2 4

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

Arrange 
them like so:

Recurse on 
L and R:

763 51 42

For the rest of the lecture, assume all 
elements of A are distinct.



PseudoPseudoCode 
for what we just saw

• QuickSort(A):
• If len(A) <= 1:
• return 

• Pick some x = A[i] at random.  Call this the pivot.
• PARTITION the rest of A into: 
• L (less than x) and 
• R (greater than x)

• Replace A with  [L, x, R]  (that is, rearrange A in this order)
• QuickSort(L) 
• QuickSort(R) 

Lecture 5 Python 
notebook for 
actual code.

Assume that all elements 
of A are distinct.  How 

would you change this if 
that’s not the case?



Running time?

• 𝑇 𝑛 = 𝑇 |𝐿| + 𝑇 𝑅 + 	𝑂 𝑛

• In an ideal world…
• if the pivot splits the array exactly in half…

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2
+ 𝑂 𝑛

• We’ve seen that a bunch:
𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).



The expected running time of 
QuickSort is O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$ .

• The expected number of items on each side of the pivot is half of 
the things.

Proof:*



Aside
why is 𝐸 𝐿 = !"#

$
	?

• 𝐸 𝐿 = 𝐸[ 𝑅 ] 
• by symmetry

• 𝐸 𝐿 + |𝑅| = 𝑛 − 1 
• because L and R make up everything except the pivot.

• 𝐸 𝐿 ] + 𝐸[|𝑅| = 𝑛 − 1 
• By linearity of expectation

• 2𝐸[ 𝐿 ] = 𝑛 − 1 
• Plugging in the first bullet point.

• 𝐸 𝐿 = !"#
$

• Solving for 𝐸 𝐿 .

Remember, we are assuming  
all elements of A are distinct



The expected running time of 
QuickSort is O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$ .

• The expected number of items on each side of the pivot is half of 
the things.

• If that occurs, the running time is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 !"#

$
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Proof:

*Disclaimer: this proof is WRONG.

*



Red flag
• QuickSort(A):
• If len(A) <= 1:

• return 
• Pick some x = A[i] at random.  Call this the pivot.

• PARTITION the rest of A into: 
• L (less than x) and 
• R (greater than x)

• Replace A with  [L, x, R]  (that is, rearrange A in this order)
• QuickSort(L) 
• QuickSort(R) 

• Same recurrence relation:
𝑇 𝑛 = 𝑇 |𝐿| + 𝑇 𝑅 + 	𝑂 𝑛

• We still have 𝐸 𝐿 = 	𝐸 𝑅 = !"#	
$
	

• But now, one of |L| or |R| is always n-1.
• You check: Running time is Θ(n2), with probability 1.

We can use the same argument 
to prove something false.

• Pick the pivot x to be either max(A) or min(A), randomly
• \\ We can find the max and min in O(n) time

Slow

Slow
Slow



The expected running time of 
SlowSort is O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$ .

• The expected number of items on each side of the pivot is half of 
the things.

• If that occurs, the running time is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 !"#

$
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Proof:

*Disclaimer: this proof is WRONG.

* What’s wrong???



What’s wrong?

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$

.
• The expected number of items on each side of the pivot is half of 

the things.

• If that occurs, the running time is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 !"#

$
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Plucky the Pedantic Penguin

That’s not how 
expectations work!

• The running time in the “expected” situation is 
not the same as the expected running time.

• Sort of like how E[X2] is not the same as (E[X])2



Instead
• We’ll have to think a little harder about how the 

algorithm works.

Next goal:
• Get the same conclusion, correctly!



Example of recursive calls

7 6 3 5 1 2 4

7 63 51 2 4

3 1 2 4 7 6

31 42

5

5 76

1 2 3 4 5 76

Pick 5 as a pivot

Partition on either side of 5

Recurse on [76] and 
pick 6 as a pivot.

Partition on 
either side of 6

Recurse on [3142] 
and pick 3 as a pivot.

Recurse on [7], it has 
size 1 so we’re done.

Partition 
around 3.

Recurse on 
[4] (done).

Recurse on 
[12] and 
pick 2 as a 
pivot.

partition 
around 2.

1 2
Recurse on 
[1] (done). 1

3 4 5 76

2 3 4 5 76



How long does this take to run?
• We will count the number of comparisons that the 

algorithm does.
• This turns out to give us a good idea of the runtime. (Not obvious, 

but we can “charge” all operations to comparisons).
• How many times are any two items compared?

7 6 3 5 1 2 4

7 63 51 4 2

In the example before, 
everything was compared 
to 5 once in the first 
step….and never again.

3 1 2 4 7 6

31 42

5

5 76

But not everything was 
compared to 3.  
5 was, and so were 1,2 and 4.  
But not 6 or 7.



Each pair of items is compared 
either 0 or 1 times.  Which is it?

7 6 3 5 1 2 4 Let’s assume that the numbers 
in the array are actually the 

numbers 1,…,n

• Whether or not a, b are compared is a random variable, that depends on 
the choice of pivots.  Let’s say 

𝑿𝒂,𝒃 = # 𝟏	 if	𝒂	and	𝒃	are	ever	compared
	 𝟎	 if	𝒂	and	𝒃	are	never	compared	

• In the previous example X1,5 = 1, because item 1 and item 5 were compared.
• But X3,6 = 0, because item 3 and item 6 were NOT compared.

Of course this doesn’t have to be the case!  It’s a good 
exercise to convince yourself that the analysis will still go 

through without this assumption.



Counting comparisons

• The number of comparisons total during the algorithm is

/
%&#

!"#

/
'&%(#

!

𝑋%,'

• The expected number of comparisons is

𝐸 /
%&#

!"#

/
'&%(#

!

𝑋%,' =	/
%&#

!"#

/
'&%(#

!

𝐸[	𝑋%,']	

     by using linearity of expectations.



Counting comparisons
• So we just need to figure out E[ Xa,b ]
• 𝐸 𝑋%,' = 𝑃(𝑋%,' = 1) ⋅ 1 + 𝑃(𝑋%,' = 0) ⋅ 0 = 𝑃(𝑋%,' = 1)

(by the definition of expectation)

• So we need to figure out:
P(Xa,b = 1) = the probability that a and b are ever compared.

7 6 3 5 1 42 Say that a = 2 and b = 6.  What is the probability 
that 2 and 6 are ever compared?

7 6 3 5 1 42 This is exactly the probability that either 2 or 6 is first 
picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be 
separated and never see each other again.7 63 51 2 4

expected	number	of	comparisons:

<
!"#

$%#

<
&"!'#

$

𝐸[	𝑋!,&]	



Counting comparisons

𝑃 	𝑋3,5 = 1	
         = probability a,b are ever compared
         = probability that one of a,b are picked first out of 
            all of the b – a +1 numbers between them.

         = $
5	"36#

7 6 3 5 1 42

2 choices out of b-a+1…



All together now…

Expected number of comparisons
• 𝐸 ∑37#!"#∑5736#! 𝑋3,5
• =	∑37#!"#∑5736#! 𝐸[	𝑋3,5]	
• =	∑37#!"#∑5736#! 𝑃(	𝑋3,5 = 1)	

• =	∑37#!"#∑5736#! $
5	"36#

• This is a big nasty sum, but we can do it.
• We get that this is less than 2n ln(n).
• (asymptotics on board if time …)

linearity of expectation

definition of expectation

the reasoning we just did

This is the expected number of 
comparisons throughout the algorithm

Do this sum!

Ollie the over-achieving ostrich



Almost done

• We saw that E[ number of comparisons ] = O(n log(n))
• Is that the same as E[ running time ]?

• QuickSort(A):
• If len(A) <= 1:

• return 
• Pick some x = A[i] at random.  Call this the pivot.
• PARTITION the rest of A into: 

• L (less than x) and 
• R (greater than x)

• Replace A with  [L, x, R]  (that is, rearrange A in 
this order)

• QuickSort(L) 
• QuickSort(R) 

• In this case, yes.

• We need to argue that 
the running time is 
dominated by the time 
to do comparisons.

• See lecture notes.



What have we learned?

• The expected running time of QuickSort is O(n log(n))



Worst-case running time 
• Suppose that an adversary is choosing the 

“random” pivots for you.
• Then the running time might be O(n2)
• E.g., they’d choose to implement SlowSort
• In practice, this doesn’t usually happen.



How should we implement this?

• Our pseudocode is easy to understand and analyze, but 
is not a good way to implement this algorithm.

• Instead, implement it in-place (without separate L and R)
• You may have seen this in CS 106b.
• Here are some Hungarian Folk Dancers showing you how it’s done: 

https://www.youtube.com/watch?v=ywWBy6J5gz8
• Check out Python notebook for Lecture 5 for two different ways.

• QuickSort(A):
• If len(A) <= 1:

• return 
• Pick some x = A[i] at random.  Call this the pivot.
• PARTITION the rest of A into: 

• L (less than x) and 
• R (greater than x)

• Replace A with  [L, x, R]  (that is, rearrange A in this order)
• QuickSort(L) 
• QuickSort(R) 

https://www.youtube.com/watch?v=ywWBy6J5gz8
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Pivot

Swap!

Initialize       and 

Step    forward.

When    sees something 
smaller than the pivot, 
swap the things ahead 
of the bars and 
increment both bars.

Repeat till the end, then 
put the pivot in the right 
place.

See lecture 5 Python notebook.

Choose it randomly, then swap it 
with the last one, so it’s at the end.



QuickSort vs. 
smarter QuickSort vs.
Mergesort?
• All seem pretty comparable…

See Python notebook for Lecture 5

In-place partition 
function uses less 
space, and also is a 
smidge faster in this 
implementation.

Hoare Partition is a 
different way of doing it 
(c.f. CLRS Problem 7-1), 

which you might have 
seen elsewhere.  You are 

not responsible for 
knowing it for this class.



QuickSort vs MergeSort
QuickSort (random pivot) MergeSort (deterministic)

Running time • Worst-case: O(n2)
• Expected: O(n log(n)) Worst-case: O(n log(n))

Used by

• Java for primitive types
• C qsort
• Unix
• g++

• Java for objects
• Perl
• Python (variant of it 

called Timsort)

In-Place?
 (With O(log(n)) 

extra bits of 
memory)

Yes, pretty easily

Not easily* if you want to 
maintain both stability and 
runtime.
(But pretty easily if you can 
sacrifice runtime).

Stable? No Yes

Other Pros Good cache locality if 
implemented for arrays

Merge step is really 
efficient with linked lists

U
nderstand this

These are just for fun. 
(N

ot on exam
).

*What if you want O(n log(n)) worst-
case runtime and stability?  Check out 

“Block Sort” on Wikipedia!



Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort…)

Recap



Recap

• How do we measure the runtime of a randomized 
algorithm?
• Expected runtime
• Worst-case runtime

• QuickSort (with a random pivot) is a randomized 
sorting algorithm.
• In many situations, QuickSort is nicer than MergeSort.
• In many situations, MergeSort is nicer than QuickSort.

Code up QuickSort and MergeSort in a few different languages, with a few 
different implementations of lists A (array vs linked list, etc).  What’s faster? 

(This is an exercise best done in C where you have a bit more control than in Python).

Ollie the over-achieving ostrich



Next time

• Can we sort faster than 𝑂(𝑛 log 𝑛 )??

• Pre-lecture exercise for Lecture 6.
• Can we sort even faster than QuickSort/MergeSort?

Before next time



https://xkcd.com/1185/


