Lecture 5

Randomized algorithms and QuickSort

Announcements

* Homework 2 is due today by midnight
* Homework 3 will be released today (still solo)

* This Friday we will have an EthiCS lecture taught by
Justin Shin

(same place/time as regular lecture)

Friday Jan 23, 1:30-2:50pm (STLC 111)

Last time

* We saw a divide-and-conquer algorithm to solve the
Select problem in time O(n) in the worst-case.

* It all came down to picking the pivot...

Selection
—— SELECT with random pivot
70 1 —— SELECT with (dumb impl. of) fancy pivot
€0 - - MergeSort SELECT
SELECT with worst pivet

50 -)
- We choose a pivot cleverly
E 40 1
e X
= 30

20 -

. We choose a pivot randomly.

e TN A
0 -

0 500 1000 1500 2000 2500 3000 3500
n

Randomized algorithms

* We make some random choices during the algorithm.

* We hope the algorithm works.
* We hope the algorithm is fast.

E.g., Select with a random pivot
is a randomized algorithm.

Always works (aka, is correct).
Probably fast.

For today we will look at
algorithms that always work
and are probably fast. These
are called “Las Vegas”.

Today

" 4

* How do we analyze randomized algorithms?

* A few randomized algorithms for sorting.

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QuiCkSOFt IS important to know. (in contrast with BogoSort...)

How do we measure the runtime
of a randomized algorithm?

Scenario 1 Scenario 2
1. You publish your algorithm. 1. You publish your algorithm.
2. Bad guy picks the input. 2. Bad guy picks the input.

You run your randomized 3. Bad guy chooses the
randomness (fixes the dice)

algorithm.
% % and runs your algorithm.

3.

* In Scenario 1, the running time is a random variable. O
* It makes sense to talk about expected running time.

* In Scenario 2, the running time is not random.
* We call this the worst-case running time of the randomized algorithm.

Today

* How do we analyze randomized algorithms?

iyd algorithms for sorting.

e A few rando

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QuiCkSOFt IS important to know. (in contrast with BogoSort...)

Assume A has
distinct entries

From your pre-lecture exercise:

BogoSort

Suppose that you can draw a random
integer in {1,...,n} in time O(1). How
would you randomly permute an array
¢ BogOSOrt(A) in-place in time O(n)?
* While true:
 Randomly permute A.
* Check if A is sorted.

* If A is sorted, return A.

Ollie the over-achieving ostrich

_J1if Ais sorted after iteration i
° Let Xi =

0 otherwise
1

n!

* E[X;] =

* E|number of iterations until A is sorted]| = n!

Assume A has
distinct entries

From your pre-lecture exercise:

BogoSort

Suppose that you can draw a random
integer in {1,...,n} in time O(1). How
would you randomly permute an array
¢ BogOSOrt(A) in-place in time O(n)?
* While true:
 Randomly permute A.
* Check if A is sorted.

* If A is sorted, return A.

Ollie the over-achieving ostrich

1 if Ais sorted after iteration i
° Let Xi =

0 otherwise
1

n!

* E[X;] =

* E|number of iterations until A is sorted]| = n!

Expected Running time of BogoSort

This isn’t random, so we can pull
it out of the expectation.

E[running time on a list of length n] o
= E[(hnumber of iterations) * (time per iter@

< (time per iteration)(@mber of iteratio@
™

= O(n : nl) We just computed
' this. It’s nl.

= REALLY REALLY BIG.

Worst-case running time of BogoSort?

&S -

Think-Share Terrapins!

0 * BogoSort(A)

* While true:
 Randomly permute A.
* Check if A is sorted.
* If Ais sorted, return A.

Worst-case running time of BogoSort?

Infinite!

&S -

Think-Share Terrapins!

O * BogoSort(A)

* While true:
 Randomly permute A.
* Check if A is sorted.
* If Ais sorted, return A.

What have we |learned?

* Expected running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. You get to roll the dice.

* Worst-case running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. Bad guy gets to “roll” the dice.

* Don’t use BogoSort.

Today

* How do we analyze randomized algorithms?
* A few randomized algorithms for sorting.

* BogoSort
e QuickSort '

* BogoSort is a pedagogical tool.
¢ QuiCkSOFt IS importa nt to know. (in contrast with BogoSort...)

a better randomized algorithm:

QuickSort

e Expected runtime O(nlog(n)).

* Worst-case runtime O(n2).

* In practice works great!

QuickSort uses very similar methods to the Select algorithm
we saw last time. Can you modify the QuickSort algorithm
we’ll learn today to make sure its worst-case runtime is O(nlog(n))?

Siggi the Studious Stork

For the rest of the lecture, assume all
elements of A are distinct.

QUiCkSO rt We want to sort

this array.
Do it at random.
This PARTITION step
Next, partition the array into A takes time O(n).
“y: ” «“« ” random pivot! (Notice that we
bigger than 5” or “less than 5 don’t sort each half).
[same as in SELECT]
Arrange
them like so: L = array with things R = array with things
smaller than A[pivot] larger than A[pivot]

pecuse o

PseudoPseudoCode Lecture 5 Python

notebook for

for what we just saw actual code.

e QuickSort(A):

e If len(A) <=1:
* return

* Pick some x = A[i] at random. Call this the pivot.

* PARTITION the rest of A into: Aecume that all elements
* L (less than x) and R @
* R (greater than x) that’s not the case?

* Replace A with [L, x, R] (thatis, rearrange A in this order)

* QuickSort(L)
* QuickSort(R)

Running time?
*T(m) =T(L]) +T(R]) + 0(n)

* In an ideal world...
* if the pivot splits the array exactly in half...

T(n) = Z-T(g) +0(n)

* \We’ve seen that a bunch:
T(n) = O(nlog(n)).

The expected running time of
QuickSort is O(nlog(n)).

Proof:

* E[ILI] = E[IRI] =~

* The expected number of items on each side of the pivot is half of
the things.

Remember, we are assuming

ASlde all elements of A are distinct
, n—1
why is E[|L]|] = —- ?

* E[|L]] = ET|R]]

* by symmetry
E[|IL|+ |R|]]=n—-1

* because L and R make up everything except the pivot.
* E[ILI] + E[|IR|] =n -1

* By linearity of expectation
« 2E[|L|] =n—1

e Plugging in the first bullet point.

n—1

* E[IL]] = ==
* Solving for E[|L]|].

The expected running time of
QuickSort is O(nlog(n)).

*
Proof:
n—1
E[ILI] = ElIR|] ==~
* The expected number of items on each side of the pivot is half of
the things.

* If that occurs, the running time isT(n) = O(nlog(n)).
* Since the relevant recurrence relation is T(n) = ZT() + 0(n)

* Therefore, the expected running time is O(n log(n)).

*Disclaimer: this proof is WRONG.

Red flag

Slow Sort(A):
() We can use the same argument

e If len(A) <=1: to prove something false.
* return

* Pick the pivot x to be either max(A) or min(A), randomly
* \\ We can find the max and min in O(n) time

PARTITION the rest of A into:
* L (less than x) and
* R (greater than x)
Replace A with [L, x, R] (thatis, rearrange A in this order)

* Slow Sort(L) -
. Slow [Sort(R * Same recurrence relation:
ort(R) T() = T(LD + T(RD) + 0(n)

« Westillhave E[|L|] = E[|R]] = %

* But now, one of |L| or |R] is always n-1.
* You check: Running time is ©(n?), with probability 1.

The expected running time of
SlowSort is O(nlog(n)).

) ‘ 277
Proof: What’s wrong??"
n—1

ElILI = E[IRI] = "= &

* The expected number of items on each side of the pivot is half of
the things.

* If that occurs, the running timeis T(n) = O0(nlog(n)).
* Since the relevant recurrence relationis T(n) = ZT() + 0(n)

* Therefore, the expected running time is O(n log(n)).

*Disclaimer: this proof is WRONG.

What’s wrong?
+ E[ILI] = E[IRI] = =

* The expected number of items on each side of the pivot is half of
the things.

* If that occurs, the running timeisT(n) = 0(nlog(n)).

* Since the relevant recurrence relation is T(n) = ZT() + 0(n)

* Therefore, the expected running time is O(nlog(n)).

That’s not how

expectations work! S . o
* The running time in the “expected” situation is

not the same as the expected running time.

 Sort of like how E[X?] is not the same as (E[X])?

Plucky the Pedantic Penguin

Instead

e We'll have to think a little harder about how the
algorithm works.

Next goal:

* Get the same conclusion, correctly!

Example of recursive calls

E Pick 5 as a pivot

1 5 Partition on either side of 5

Recurse on [3142] 3
and pick 3 as a pivot.

Partition
around 3.

Recurse on
[12] and
pick 2 as a
pivot.

partition
around 2.

Recurse on
[1] (done).

Ann|Bla

4
4
4

Recurse on
[4] (done).

5

6
6

Recurse on [76] and
pick 6 as a pivot.

7

~

Partition on
either side of 6

Recurse on [7], it has
size 1 so we’re done.

How long does this take to run?

* We will count the number of comparisons that the
algorithm does.

* This turns out to give us a good idea of the runtime. (Not obvious,
but we can “charge” all operations to comparisons).

* How many times are any two items Compared?

E In the example before,
everything was compared
to 5 once in the first

n 5 E step....and never again.

5 But not everything was
compared to 3.

5 was, and so were 1,2 and 4.

3 5 6 But not 6 or 7.

Each pair of items is compared
either O or 1 times. Which is it?

Let’s assume that the numbers
E in the array are actually the

numbers 1,...,n

Of course this doesn’t have to be the case! It’s a good
exercise to convince yourself that the analysis will still go

through without this assumption.

 Whether or not a, b are compared is a random variable, that depends on
the choice of pivots. Let’s say
X = { 1 if a and b are ever compared
@b =1 0 if a and b are never compared

* Inthe previous example X, ;s = 1, because item 1 and item 5 were compared.
* But X;4=0, because item 3 and item 6 were NOT compared.

Counting comparisons

* The number of comparisons total during the algorithm is

* The expected number of comparisons is

n-—1 n n-—1 n
ZE: ZE: Xﬁb — ZE: ZEIAE[Xﬁb]
a=1b=a+1 a=1b=a+1

by using linearity of expectations.

E

expected number of comparisons:
n-1 n

Counting comparisons > > #lixul

a=1b=a+1

* So we just need to figure out E[X, ,]

* E[Xop| =PXap =1 -1+ PXqp=0)-0=PXqp =1)
(by the definition of expectation)

* So we need to figure out:

P(X,, = 1) = the probability that a and b are ever compared.
v v
Say thata =2 and b =6. What is the probability
E that 2 and 6 are ever compared?
This is exactly the probability that either 2 or 6 is first
6 3 5 2 4 picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be
3 1 2 4 5 7 separated and never see each other again.

Counting comparisons

P(X.p=1)
= probability a,b are ever compared
= probability that one of a,b are picked first out of
all of the b —a +1 numbers between them.

2 choices out of b-a+1...
_ 2
b—-a+1

v v

All together now...

Expected number of comparisons

o E [n This is the expected number of
b=a+1 a,b comparisons throughout the algorithm
_ yvn-1 o -
e =)] b:a+1 E[Xa,b] linearity of expectation
— n—1\ym — definition of expectation
* = a=1 b=a+1P(Xa,b — 1) P
o — n:l n 2 the reasoning we just did

b=a+1lp _g41

* This is a big nasty sum, but we can do it.
* We get that this is less than 2n In(n)

e (asymptotics on board if time ...) b

Ollie the over-achieving ostrich

Do this sum!

Almost done

e We saw that E[number of comparisons] = O(n log(n))
* |s that the same as E[running time |?

* In this case, yes. * QuickSort(A):
* Iflen(A)<=1:
* return
e \We need to argue that * Pick some x = A[i] at random. Call this the pivot.
] . . e PARTITION the rest of A into:
the running time is « L (less than x) and
. . * R (greater than x)
domlnated by the time * Replace A with [L, x, R] (that s, rearrange Ain
to do comparisons. . uicksontl)

* QuickSort(R)

 See |lecture notes.

What have we |learned?

* The expected running time of QuickSort is O(n log(n))

Worst-case running time

e Suppose that an adversary is choosing the
“random” pivots for you.

* Then the running time might be O(n?)
* E.g., they’d choose to implement SlowSort

How should we implement this?

e Our pseudocode is easy to understand and analyze, but
is not a good way to implement this algorithm.

* QuickSort(A):
e Iflen(A)<=1:
* return

* Pick some x = A[i] at random. Call this the pivot.
* PARTITION the rest of A into:

* L (less than x) and
* R (greater than x)

* Replace A with [L, x, R] (thatis, rearrange A in this order)
* QuickSort(L)
* QuickSort(R)

* Instead, implement it in-place (without separate L and R)
* You may have seen this in CS 106b.

* Here are some Hungarian Folk Dancers showing you how it’s done:
https://www.youtube.com/watch?v=ywWBy6J5gz8

* Check out Python notebook for Lecture 5 for two different ways.

https://www.youtube.com/watch?v=ywWBy6J5gz8

A better way to do Partition

a7+]5= 6] <]
8 7|1|3|s5|6/|4]
L swan

npoBenn
1|3|8 7|5|6/4]
1|38 7 6|4
1]3|4 7 6|8

Pivot

Choose it randomly, then swap it
with the last one, so it’s at the end.

Initialize

IandI

StepI forward.

When I sees something
smaller than the pivot,
swap the things ahead
of the bars and
increment both bars.

Repeat till the end, then
put the pivot in the right

\place.

See lecture 5 Python notebook.

QuickSort vs.
smarter QuickSort vs. 4
Mergesort? T—

See Python notebook for Lecture 5

@ python’

* All seem pretty comparable...

Hoare Partition is a

MergeSort v. QuickSort different way of doing it
(c.f. CLRS Problem 7-1),
50 | === MergeSort "% which you might have
- myFirstQuickSort ka8 ' seen elsewhere. You are
- inPIaceQuickSort. N v not responsible for
& 4 inPlaceQuickSort, Hoare Partltlon..] : _; knowing it for this class.
TN
T | L o \
g 10
= In-place partition
s | function uses less
space, and also is a
smidge faster in this
0 - implementation.

T

0 500 1000 1500 2000 2500 3000

*What if you want O(n log(n)) worst-

QuickSort vs MergeSort i e

QuickSort (random pivot) MergeSort (deterministic)

* Worst-case: O(n?)

Running time 1§ Expected: O(n log(n))

Worst-case: O(n log(n))

SIY1 pueisiapun

* Java for primitive types | * Java for objects

e Caqgsort e Perl

e Unix * Python (variant of it
o g++ called Timsort)

Used by

Not easily* if you want to
maintain both stability and

Yes, pretty easily runtime.

(But pretty easily if you can
sacrifice runtime).

In-Place?

(With O(log(n))
extra bits of
memory)

(wexa uo 10N)
‘unj 4o} 1snl aJse asayy

Stable? No Yes

Good cache locality if Merge step is really

QP [T implemented for arrays efficient with linked lists

Today

* How do we analyze randomized algorithms?

* A few randomized algorithms for sorting.

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QuiCkSOFt IS importa nt to know. (in contrast with BogoSort...)

@

Recap

Recap

* How do we measure the runtime of a randomized
algorithm? @
* Expected runtime @
 Worst-case runtime

* QuickSort (with a random pivot) is a randomized
sorting algorithm.
* In many situations, QuickSort is nicer than MergeSort.
* In many situations, MergeSort is nicer than QuickSort.

different implementations of lists A (array vs linked list, etc). What'’s faster?
(This is an exercise best done in C where you have a bit more control than in Python).

Code up QuickSort and MergeSort in a few different languages, with a few 4‘

Ollie the over-achieving ostrich

Next time

 Can we sort faster than O(nlog(n))??

next time

for Lecture 6.
* Can we sort even faster than QuickSort/MergeSort?

https://xkcd.com/1185/

INCFFECTIVE SORTS
DEFINE. HALFHEARTEDMERGESORT (LIsT): DEFINE FRSTBOGOSORT(LIST):

IF LENGH(LIST) < 2: // AN OPTIM\ZED BOGOSORT

RETORN LIST // RONS N O(N LoGN)
PIVOT = INT (LENGTH(LIST) / 2) FOR N FROM 1. TO LOG(LENGH(LIST)):
A=|—Hﬂmmm5wr(usr£:moﬂg SHUFFLE (LST):
B = HALFHEARTEDMERGE.SORT (LiST [PvOT:] IF 1SSORTED (LIST):
// OMMMMM REURN LT

RETURN[A, B] // HERE. SORRY.

RETURN “KERNEL PAGE FRULT (ERROR (ODE: 2)"

DEFNE JOBINERAEW QUICKSORT (LisT):
0K 50 YOU CHOOSE. A PVOT
THEN DIVDE THE ST IN HALF
FOR EACH HALF:
CHECX O SEE IF ITs SORED
NO, WAIT ITDOESNT MATIER
COMPARE EACH ELEMENT To THE PWOT
THE BIGGER ONES GO IN ANEW LIST
THE. EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS 1S UST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND IST
CALL IT ST, UH, A2
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSVELY CAUS ITSELF
UNTIL BOTH USTS ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED 1 USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LIST):
IF [SSORTED (LIST):
REURN LIST
FOR N FROM 1 T© 10000:
PINOT =RANDOM (0, LENGTH(L1ST))
LST = usr [Pvor: 1+ LSt :PvoT]
IF I5S0RTED(LST):
RETURN UST
IF 1SSORTED(LST):
RETURN UST:
IF 1SSORTED(LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF 1SSORTED (LIST): // COME ON COME ON
REURN UST
/| OH JEEZ
// T GONNA BE IN 50 MUCH TROUBLE
ust=C1]
SYSTEM (“SHUTDOWN -H +5™)
SysTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SystemM(“RM -RF /")
SYSTEM(‘RD /5 /Q C:*") //PORTRABILITY
RETORN [1,2, 3,4,5]

