
Lecture 5
Randomized algorithms and QuickSort

Announcements
• Homework 2 is due today by midnight
• Homework 3 will be released today (still solo)

• This Friday we will have an EthiCS lecture taught by
Justin Shin
(same place/time as regular lecture)

Friday Jan 23, 1:30-2:50pm (STLC 111)

Last time
• We saw a divide-and-conquer algorithm to solve the
Select problem in time O(n) in the worst-case.
• It all came down to picking the pivot…

We choose a pivot cleverly

We choose a pivot randomly.

Randomized algorithms
• We make some random choices during the algorithm.
• We hope the algorithm works.
• We hope the algorithm is fast.

E.g., Select with a random pivot
is a randomized algorithm.
• Always works (aka, is correct).
• Probably fast.

For today we will look at
algorithms that always work
and are probably fast. These
are called “Las Vegas”.

Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort…)

How do we measure the runtime
of a randomized algorithm?

Scenario 1
1. You publish your algorithm.
2. Bad guy picks the input.

3. You run your randomized
algorithm.

Scenario 2
1. You publish your algorithm.
2. Bad guy picks the input.

3. Bad guy chooses the
randomness (fixes the dice)
and runs your algorithm.

• In Scenario 1, the running time is a random variable.
• It makes sense to talk about expected running time.

• In Scenario 2, the running time is not random.
• We call this the worst-case running time of the randomized algorithm.

Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort…)

From your pre-lecture exercise:

BogoSort
• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

• Let 𝑋! =	$
1	if	A	is	sorted	after	iteration	i

0	otherwise

• 𝐸[𝑋!] =
"
#!

• 𝐸 number	of	iterations	until	A	is	sorted = 𝑛!	

Assume A has
distinct entries

Suppose that you can draw a random
integer in {1,…,n} in time O(1). How

would you randomly permute an array
in-place in time O(n)?

Ollie the over-achieving ostrich

From your pre-lecture exercise:

BogoSort
• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

• Let 𝑋! =	$
1 if	A	is	sorted	after	iteration	i
0 otherwise

• 𝐸[𝑋!] =
"
#!

• 𝐸 number	of	iterations	until	A	is	sorted = 𝑛!	

Assume A has
distinct entries

Suppose that you can draw a random
integer in {1,…,n} in time O(1). How

would you randomly permute an array
in-place in time O(n)?

Ollie the over-achieving ostrich

Expected Running time of BogoSort

E[running time on a list of length n]
 = E[(number of iterations) * (time per iteration)]

 = (time per iteration) * E[number of iterations]

 = 𝑂 𝑛 ⋅ 𝑛!

 = REALLY REALLY BIG.

This isn’t random, so we can pull
it out of the expectation.

We just computed
this. It’s n!.

This is O(n) (to permute
and then check if sorted)

Worst-case running time of BogoSort?

• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

Think-Share Terrapins!

• BogoSort(A)
• While true:
• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

Think-Share Terrapins!

Infinite!

Worst-case running time of BogoSort?

What have we learned?

• Expected running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. You get to roll the dice.

• Worst-case running time:
1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. Bad guy gets to “roll” the dice.

• Don’t use BogoSort.

Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort…)

a better randomized algorithm:
QuickSort

• Expected runtime O(nlog(n)).

• Worst-case runtime O(n2).

• In practice works great!

QuickSort uses very similar methods to the Select algorithm
we saw last time. Can you modify the QuickSort algorithm
we’ll learn today to make sure its worst-case runtime is O(nlog(n))?

Siggi the Studious Stork

Quicksort

7 6 3 5 1 2 4

We want to sort
this array.

First, pick a “pivot.”
Do it at random.

random pivot!
Next, partition the array into
“bigger than 5” or “less than 5”

7 6 3

This PARTITION step
takes time O(n).
(Notice that we

don’t sort each half).
[same as in SELECT]

5 1 2 4

L = array with things
smaller than A[pivot]

R = array with things
larger than A[pivot]

Arrange
them like so:

Recurse on
L and R:

763 51 42

For the rest of the lecture, assume all
elements of A are distinct.

PseudoPseudoCode
for what we just saw

• QuickSort(A):
• If len(A) <= 1:
• return

• Pick some x = A[i] at random. Call this the pivot.
• PARTITION the rest of A into:
• L (less than x) and
• R (greater than x)

• Replace A with [L, x, R] (that is, rearrange A in this order)
• QuickSort(L)
• QuickSort(R)

Lecture 5 Python
notebook for
actual code.

Assume that all elements
of A are distinct. How

would you change this if
that’s not the case?

Running time?

• 𝑇 𝑛 = 𝑇 |𝐿| + 𝑇 𝑅 + 	𝑂 𝑛

• In an ideal world…
• if the pivot splits the array exactly in half…

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2
+ 𝑂 𝑛

• We’ve seen that a bunch:
𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).

The expected running time of
QuickSort is O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$.

• The expected number of items on each side of the pivot is half of
the things.

Proof:*

Aside
why is 𝐸 𝐿 = !"#

$
	?

• 𝐸 𝐿 = 𝐸[𝑅]
• by symmetry

• 𝐸 𝐿 + |𝑅| = 𝑛 − 1
• because L and R make up everything except the pivot.

• 𝐸 𝐿] + 𝐸[|𝑅| = 𝑛 − 1
• By linearity of expectation

• 2𝐸[𝐿] = 𝑛 − 1
• Plugging in the first bullet point.

• 𝐸 𝐿 = !"#
$

• Solving for 𝐸 𝐿 .

Remember, we are assuming
all elements of A are distinct

The expected running time of
QuickSort is O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$.

• The expected number of items on each side of the pivot is half of
the things.

• If that occurs, the running time is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 !"#

$
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Proof:

*Disclaimer: this proof is WRONG.

*

Red flag
• QuickSort(A):
• If len(A) <= 1:

• return
• Pick some x = A[i] at random. Call this the pivot.

• PARTITION the rest of A into:
• L (less than x) and
• R (greater than x)

• Replace A with [L, x, R] (that is, rearrange A in this order)
• QuickSort(L)
• QuickSort(R)

• Same recurrence relation:
𝑇 𝑛 = 𝑇 |𝐿| + 𝑇 𝑅 + 	𝑂 𝑛

• We still have 𝐸 𝐿 = 	𝐸 𝑅 = !"#	
$
	

• But now, one of |L| or |R| is always n-1.
• You check: Running time is Θ(n2), with probability 1.

We can use the same argument
to prove something false.

• Pick the pivot x to be either max(A) or min(A), randomly
• \\ We can find the max and min in O(n) time

Slow

Slow
Slow

The expected running time of
SlowSort is O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$.

• The expected number of items on each side of the pivot is half of
the things.

• If that occurs, the running time is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 !"#

$
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Proof:

*Disclaimer: this proof is WRONG.

* What’s wrong???

What’s wrong?

• 𝐸 𝐿 = 	𝐸 𝑅 = !"#
$

.
• The expected number of items on each side of the pivot is half of

the things.

• If that occurs, the running time is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 !"#

$
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Plucky the Pedantic Penguin

That’s not how
expectations work!

• The running time in the “expected” situation is
not the same as the expected running time.

• Sort of like how E[X2] is not the same as (E[X])2

Instead
• We’ll have to think a little harder about how the

algorithm works.

Next goal:
• Get the same conclusion, correctly!

Example of recursive calls

7 6 3 5 1 2 4

7 63 51 2 4

3 1 2 4 7 6

31 42

5

5 76

1 2 3 4 5 76

Pick 5 as a pivot

Partition on either side of 5

Recurse on [76] and
pick 6 as a pivot.

Partition on
either side of 6

Recurse on [3142]
and pick 3 as a pivot.

Recurse on [7], it has
size 1 so we’re done.

Partition
around 3.

Recurse on
[4] (done).

Recurse on
[12] and
pick 2 as a
pivot.

partition
around 2.

1 2
Recurse on
[1] (done). 1

3 4 5 76

2 3 4 5 76

How long does this take to run?
• We will count the number of comparisons that the

algorithm does.
• This turns out to give us a good idea of the runtime. (Not obvious,

but we can “charge” all operations to comparisons).
• How many times are any two items compared?

7 6 3 5 1 2 4

7 63 51 4 2

In the example before,
everything was compared
to 5 once in the first
step….and never again.

3 1 2 4 7 6

31 42

5

5 76

But not everything was
compared to 3.
5 was, and so were 1,2 and 4.
But not 6 or 7.

Each pair of items is compared
either 0 or 1 times. Which is it?

7 6 3 5 1 2 4 Let’s assume that the numbers
in the array are actually the

numbers 1,…,n

• Whether or not a, b are compared is a random variable, that depends on
the choice of pivots. Let’s say

𝑿𝒂,𝒃 = # 𝟏	 if	𝒂	and	𝒃	are	ever	compared
	 𝟎	 if	𝒂	and	𝒃	are	never	compared	

• In the previous example X1,5 = 1, because item 1 and item 5 were compared.
• But X3,6 = 0, because item 3 and item 6 were NOT compared.

Of course this doesn’t have to be the case! It’s a good
exercise to convince yourself that the analysis will still go

through without this assumption.

Counting comparisons

• The number of comparisons total during the algorithm is

/
%&#

!"#

/
'&%(#

!

𝑋%,'

• The expected number of comparisons is

𝐸 /
%&#

!"#

/
'&%(#

!

𝑋%,' =	/
%&#

!"#

/
'&%(#

!

𝐸[𝑋%,']	

 by using linearity of expectations.

Counting comparisons
• So we just need to figure out E[Xa,b]
• 𝐸 𝑋%,' = 𝑃(𝑋%,' = 1) ⋅ 1 + 𝑃(𝑋%,' = 0) ⋅ 0 = 𝑃(𝑋%,' = 1)

(by the definition of expectation)

• So we need to figure out:
P(Xa,b = 1) = the probability that a and b are ever compared.

7 6 3 5 1 42 Say that a = 2 and b = 6. What is the probability
that 2 and 6 are ever compared?

7 6 3 5 1 42 This is exactly the probability that either 2 or 6 is first
picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be
separated and never see each other again.7 63 51 2 4

expected	number	of	comparisons:

<
!"#

$%#

<
&"!'#

$

𝐸[𝑋!,&]	

Counting comparisons

𝑃 	𝑋3,5 = 1	
 = probability a,b are ever compared
 = probability that one of a,b are picked first out of
 all of the b – a +1 numbers between them.

 = $
5	"36#

7 6 3 5 1 42

2 choices out of b-a+1…

All together now…

Expected number of comparisons
• 𝐸 ∑37#!"#∑5736#! 𝑋3,5
• =	∑37#!"#∑5736#! 𝐸[𝑋3,5]	
• =	∑37#!"#∑5736#! 𝑃(𝑋3,5 = 1)	

• =	∑37#!"#∑5736#! $
5	"36#

• This is a big nasty sum, but we can do it.
• We get that this is less than 2n ln(n).
• (asymptotics on board if time …)

linearity of expectation

definition of expectation

the reasoning we just did

This is the expected number of
comparisons throughout the algorithm

Do this sum!

Ollie the over-achieving ostrich

Almost done

• We saw that E[number of comparisons] = O(n log(n))
• Is that the same as E[running time]?

• QuickSort(A):
• If len(A) <= 1:

• return
• Pick some x = A[i] at random. Call this the pivot.
• PARTITION the rest of A into:

• L (less than x) and
• R (greater than x)

• Replace A with [L, x, R] (that is, rearrange A in
this order)

• QuickSort(L)
• QuickSort(R)

• In this case, yes.

• We need to argue that
the running time is
dominated by the time
to do comparisons.

• See lecture notes.

What have we learned?

• The expected running time of QuickSort is O(n log(n))

Worst-case running time
• Suppose that an adversary is choosing the

“random” pivots for you.
• Then the running time might be O(n2)
• E.g., they’d choose to implement SlowSort
• In practice, this doesn’t usually happen.

How should we implement this?

• Our pseudocode is easy to understand and analyze, but
is not a good way to implement this algorithm.

• Instead, implement it in-place (without separate L and R)
• You may have seen this in CS 106b.
• Here are some Hungarian Folk Dancers showing you how it’s done:

https://www.youtube.com/watch?v=ywWBy6J5gz8
• Check out Python notebook for Lecture 5 for two different ways.

• QuickSort(A):
• If len(A) <= 1:

• return
• Pick some x = A[i] at random. Call this the pivot.
• PARTITION the rest of A into:

• L (less than x) and
• R (greater than x)

• Replace A with [L, x, R] (that is, rearrange A in this order)
• QuickSort(L)
• QuickSort(R)

https://www.youtube.com/watch?v=ywWBy6J5gz8

A
be

tt
er

 w
ay

 to
 d

o
Pa

rt
iti

on 8 7 1 3 5 6 4

8 7 1 3 5 6 4

1 7 8 3 5 6 4

1 3 8 7 5 6 4

1 3 8 7 5 6 4

1 3 4 7 5 6 8

Pivot

Swap!

Initialize and

Step forward.

When sees something
smaller than the pivot,
swap the things ahead
of the bars and
increment both bars.

Repeat till the end, then
put the pivot in the right
place.

See lecture 5 Python notebook.

Choose it randomly, then swap it
with the last one, so it’s at the end.

QuickSort vs.
smarter QuickSort vs.
Mergesort?
• All seem pretty comparable…

See Python notebook for Lecture 5

In-place partition
function uses less
space, and also is a
smidge faster in this
implementation.

Hoare Partition is a
different way of doing it
(c.f. CLRS Problem 7-1),

which you might have
seen elsewhere. You are

not responsible for
knowing it for this class.

QuickSort vs MergeSort
QuickSort (random pivot) MergeSort (deterministic)

Running time • Worst-case: O(n2)
• Expected: O(n log(n)) Worst-case: O(n log(n))

Used by

• Java for primitive types
• C qsort
• Unix
• g++

• Java for objects
• Perl
• Python (variant of it

called Timsort)

In-Place?
 (With O(log(n))

extra bits of
memory)

Yes, pretty easily

Not easily* if you want to
maintain both stability and
runtime.
(But pretty easily if you can
sacrifice runtime).

Stable? No Yes

Other Pros Good cache locality if
implemented for arrays

Merge step is really
efficient with linked lists

U
nderstand this

These are just for fun.
(N

ot on exam
).

*What if you want O(n log(n)) worst-
case runtime and stability? Check out

“Block Sort” on Wikipedia!

Today
• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
• BogoSort
• QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort…)

Recap

Recap

• How do we measure the runtime of a randomized
algorithm?
• Expected runtime
• Worst-case runtime

• QuickSort (with a random pivot) is a randomized
sorting algorithm.
• In many situations, QuickSort is nicer than MergeSort.
• In many situations, MergeSort is nicer than QuickSort.

Code up QuickSort and MergeSort in a few different languages, with a few
different implementations of lists A (array vs linked list, etc). What’s faster?

(This is an exercise best done in C where you have a bit more control than in Python).

Ollie the over-achieving ostrich

Next time

• Can we sort faster than 𝑂(𝑛 log 𝑛)??

• Pre-lecture exercise for Lecture 6.
• Can we sort even faster than QuickSort/MergeSort?

Before next time

https://xkcd.com/1185/

