Lecture 6

Sorting lower bounds and O(n)-time sorting

High Resolution Feedback

* We value all your feedback!

* Please take a moment to respond when asked.

More detailed schedule on the website!

Roadmap

Divide and
conquer

Dynamic
Programming

Greedy Algs

Sorting

* We’ve seen a few O(n log(n))-time algorithms.
 MERGESORT has worst-case running time O(n log(n))
* QUICKSORT has expected running time O(n log(n))

Can we do better?

Depends on who
you ask...

. ~,
. L
&
. o
\\-

~ WE CAN DO WAY BETTER!

w4 An O(1)-time algorithm for sorting:
StickSort

* Problem: sort these n sticks by length.
* Now they | I | I

are sorted
this way.

. A%orithm:

Drop them on a table.

That may have been unsatisfying

e But StickSort does raise some important questions:

 What is our model of computation?
* |[nput: array
e QOutput: sorted array
e Operations allowed: comparisons

VS
* Input: sticks

e QOutput: sorted sticks in vertical order
e Operations allowed: dropping on tables

 What are reasonable models of computation?

Today: two models

 Comparison-based sorting model
* This includes MergeSort, QuickSort, InsertionSort

* We'll see that any algorithm in this model must take at
least Q(n log(n)) steps.

 Another model (more reasonable than the stick model...)
e CountingSort and RadixSort
e Both runin time O(n)

Comparison-based sorting

Comparison-based sorting algorithms

* You want to sort an array of items.

* You can’t access the items’ values directly: you can
only compare two items and find out which is
bigger or smaller.

Comparison-based sorting algorithms

* *) is shorthand for

| ™ T =
L "‘ h g - ® “the first thing in the input list”
= (0f "
I’

Want to sort these items.
There’s some ordering on them, but we don’t know what it is.

¢
Is Q’} bigger than £

a8

YES

There is a genie who knows what
the right order is.

The algorithm’s job is to The genie can answer YES/NO
output a correctly sorted questions of the form:
Algorithm list of all the objects. is [this] bigger than [that]?

All the sorting algorithms we
have seen work like this.

P|votI

Is bigger than ?

Is E bigger ’rhan .
. blgger ’rhan .

eg, QuickSort:

Lower bound of Q(n log(n)).

e Theorem:

* Any deterministic comparison-based sorting algorithm must
take Q(n log(n)) steps.

* Any randomized comparison-based sorting algorithm must

take Q(n log(n)) steps in expectation. .
This covers all the

sorting algorithms
we know!!!

* How might we prove this?

1. Consider all comparison-based algorithms, one-by-one,
and analyze them.

Instead, argue that all comparison-based sorting

2. Don’t do that. algorithms give r|§§ to a decision tree.
Then analyze decision trees. 12

Decision trees

OF B

Sort these three things.

Decision trees

Internal nodes
correspond to yes/no
guestions.
Each internal node has
two children, one for
“yes” and one for “no.”
Leaf nodes correspond
to outputs. ’
* In this case, all possible 7

orderings of the items. | . & S =
cerine . ‘%}%ﬁ ‘i:‘ = |‘izii= %)‘
Running an algorithm)

on a particular input g I—ﬁ - . A
corresponds to a “ bt "“ o T ‘ T © e
particular path through
the tree.

14

Comparison-based algorithms look like decision trees.

Pivot!

oEs

Example: Sort these
three things using
QuickSort.

Then we’re done
(after some base-
case stuff)

In either case, we're done Return
- 1

(after some base case stuff and
returning recursive calls).

Q: What's the runtime on a particular input?

A: At least the length of
the path from the root to
the corresponding leaf.

If we take this path through
the tree, the runtime is
Q(length of the path).

YE

16

Q: What’s the worst-case runtime?
A: At least Q(length of the longest path).

How long is the longest path? |

We want a statement: in all such trees,
the longest path is at least

Q * This is a binary tree with at
NO |
least ! |eaves.

* The shallowest tree with n!
leaves is the completely
balanced one, which has
depth log(n!) |

|,-,‘e= “ °-| |g= - | e Soin all such trees, the
O% & longest path is at least log(n!).

* n!isabout (n/e)" (Stirling’s approx.*). Conclusion: the longest path
* log(n!) is about n log(n/e) = Q(n log(n)). | has length at least Q(n log(n)).

18

*Stirling’s approximation is a bit more complicated than this, but this is good enough for the asymptotic result we want.

Lower bound of Q(n log(n)).

e Theorem:

* Any deterministic comparison-based sorting algorithm must
take Q(n log(n)) steps.

* Proof recap:

* Any deterministic comparison-based algorithm can be
represented as a decision tree with n! leaves.

* The worst-case running time is at least the depth of the decision
tree.

* All decision trees with n! leaves have depth Q(n log(n)).

* So any comparison-based sorting algorithm must have worst-
case running time at least Q(n log(n)).

19

Aside:
What about randomized algorithms?

* For example, QuickSort?
* Theorem:

&

* Any randomized comparison-based sorting algorithm
must take Q(n log(n)) steps in expectation.

¢

* Proof:
* (same ideas as deterministic case)
* (you are not responsible for this proof in this class)

Try to prove this
yourself!
\end{Aside}

Ollie the over-achievinzgoostrich

So that’s bad news

e Theorem:

* Any deterministic comparison-based sorting algorithm must
take Q(n log(n)) steps.

e Theorem:

* Any randomized comparison-based sorting algorithm must take
Q(n log(n)) steps in expectation.

21

On the bright side,
MergeSort is optimall

* This is one of the cool things about lower bounds like this:
we know when we can declare victory!

22

But what about StickSort?

* StickSort can’t be implemented as a comparison-based
sorting algorithm. So these lower bounds don’t apply.

e But StickSort was kind of silly.

Especially if | have
to spend time
cutting all those

Can we do better? sticks to be the

right size!

* Isthere another model of computation
that’s less silly than the StickSort model, in
which we can sort faster than nlog(n)?

23

Beyond comparison-based
sorting algorithms

, ey :
~INE CAN DO WAY BETTER!

Another model of computation

* The items you are sorting have meaningful values.

oefslsfz]1f2

instead of

25

Pre-lecture exercise

* How long does it take to sort n people by their
month of birth?

& -

Share your answers

L e

1(Jan) 1(Jan) 4(Apr) 5 (May)

Another model of computation

* The items you are sorting have meaningful values.

oefslsfz]1f2

instead of

27

Implement the buckets as linked

Why m|ght th|S help? ﬁ lists. They are first-in, first-out.

) This will be useful later.

countngsort: |9 | 6|3]5|2]1]2

Bl ol

Concatenate SO RTE D I

the buckets! In time O(n).
28

Assumptions

uuutttbiiuubibbliiuutout
Jubbuuubububbbbubbuul
LUUUUULUEUUUUUBU UUbUUOuUOL

RadixSort

* For sorting integers up to size M
* or more generally for lexicographically sorting strings

* Can use less space than CountingSort

* |dea: CountingSort on the least-significant digit
first, then the next least-significant, and so on.

Step 1: CountingSort on least significant digit

JBEUULL

el

Step 2: CountingSort on the 2 |east sig. digit

1
o 1 2 3 4 5 6 7 8 9

32

Step 3: CountingSort on the 3™ |east sig. digit

a UL

It worked!!

Why does this work?

Original array:

Next array is sorted by the first digit.

Next array is sorted by the first two digits.
101 01 13 21 234 | 345 50

Next array is sorted by all three digits.

o0 [013 [021 [os0 | 101 | 234 [385

Sorted array

34

To prove this is correct...

 What is the inductive hypothesis?

Original array:

Next array is sorted by the first digit.

&

Next array is sorted by the first two digits.

Think-Share Terrapins 101 01 13 21 234 345 50

Next array is sorted by all three digits.
oot | os0 [101 [234 [385

Sj%rted array

RadixSort is correct

* Inductive hypothesis:
* After the k’th iteration, the array is sorted by the first k
least-significant digits.
* Base case:
e “Sorted by 0 least-significant digits” means not yet
sorted, so the IH holds for k=0.
* Inductive step:
e TODO

* Conclusion:

* The inductive hypothesis holds for all k, so after the last
iteration, the array is sorted by all the digits. Hence, it’s
sorted!

36

=2

EXAMPLE: i

Inductive hypothesis:
After the k’th iteration, the array is sorted

| n d U Ct I Ve Ste p by the first k least-significant digits.

* Need to show: if IH holds for k=i-1, then it holds for k=i.

e Suppose that after the i-1'st iteration, the array is sorted by
the first i-1 least-significant digits.

* Need to show that after the i’th iteration, the array is sorted
by the first i least-significant digits.

IH: this array is sorted by first digit.

ol (o] (e (] el () L L L)L
0 1 2 3 4 5 6 7 8 9

Want to show: this arrav is sorted bv 15t and 2" digits.

=2

EXAMPLE: i

Want to show: after the i'th
P O Of S k@tCh cee iteration, the array is sorted by

proof on next (skipped) slide the first i least-significant digits.

* Let Xx=[Xy4Xq4.1...-Xo%1] and y=[y4Yq4.1.--Y2Y1] be any x,y.
* Suppose [XXi.1..-XX1] < [YiYi1--YaYal-
* Want to show that x appears before y at end of i'th iteration.

Aka, we want to show that for any x and y so

() CASE 1: X|<y| that x belongs before y, we put x before y.
* xis in an earlier bucket thany.

IH: th|s array is sorted l‘ r first digit.

101|002 o013 4f 234 [345 |

ﬂ'llwiiHLlLlLlLl

101 002 o1§ ozlll— 234 345 050

Want to show: this arrav is sorted bv 15t and 2" digits.

i=2

II\

 Tgpytes H-iHI_II_II_II_I

EXAMPLE:

Want to show: after the i'th
P O Of S k@tCh cee iteration, the array is sorted by

proof on next (skipped) slide the first i least-significant digits.

e Let x=[X4X4.1---XoX1] and y=[yyYq.1...Y2Y1] b€ any x,y.

* Suppose [XXi.1..-XX1] < [YiYi1--YaYal-

* Want to show that x appears before y at end of i'th iteration.
° CASE 1: Xi<yi Aka, we want to show that for any x and y so

. . . that x belongs before y, we put x before y.
* xis in an earlier bucket thany.
¢ CASE 2: Xi=yi
°

[X: 10 X%X1] < [Viq--YoY4l,
* xand y in same bucket, but x was put in the bucket first.

IH: this array is sorted by first digit

050§ 021 I 607

alOl ooz; y . 013 021 234 345 050

Want to show: this arrav\is sorted bv 15t and 2" digits.

=2

EXAMPLE: i

Inductive hypothesis:
After the k’th iteration, the array is sorted

| n d U Ct I Ve Ste p by the first k least-significant digits.

* Need to show: if IH holds for k=i-1, then it holds for k=i.

e Suppose that after the i-1'st iteration, the array is sorted by
the first i-1 least-significant digits.

* Need to show that after the i’th iteration, the array is sorted
by the first i least-significant digits.

IH: this array is sorted by first digit.

ol (o] (e (] el () L LS L)L
0 1 2 3 4 5 6 7 8 9

Want to show: this arrav is sorted bv 15t and 2" digits.

RadixSort is correct

* Inductive hypothesis:
* After the k’th iteration, the array is sorted by the first k
least-significant digits.
* Base case:
e “Sorted by 0 least-significant digits” means not sorted,
so the IH holds for k=0.
* Inductive step:
e TODO

* Conclusion:

* The inductive hypothesis holds for all k, so after the last
iteration, the array is sorted by all the digits. Hence, it’s
sorted!

42

for RadixSorting

What is the running time? meessmeo

e Suppose we are sorting n d-digit numbers (in base 10).
e.g., n=7, d=3:

1. How many iterations are there?

2. How long does each iteration take?

@& B

3. What is the total running time? Think-Share Terrapins

43

for RadixSorting

What is the running time? meessmeo

e Suppose we are sorting n d-digit numbers (in base 10).
e.g., n=7, d=3:

1. How many iterations are there?
 diterations

2. How long does each iteration take?
* Time to initialize 10 buckets, plus time to put n numbers in
10 buckets. O(n).

3. What is the total running time?

* O(nd) "

Think-Share Terrapins,,

This doesn’t seem so great

* To sort n integers, each of whichisin {1,2,...,n}...
*d=[log;o(n)] +1

* For example:
* n=1234
e |log10(1234)|+1 =4
* More explanation on next (skipped) slide.

* Time=0(nd) = 0(nlog(n)).

* Same as MergeSort!

Can we do better?

e RadixSort base 10 doesn’t seem to be such a good
idea...

e But what if we change the base? (Let’s say base r)

e We will see there’s a trade-off:

* Bigger r means more buckets
* Bigger r means fewer digits

Example: base 100

Original array:

48

Example: base 100

Original array:

100 buckets:
00 01 02 34 50 98 99

Example: base 100

100 buckets:

0050

0013
0001 0101 0234 0345

00

Srted!

Example: base 100

Original array

0001 | 0013 0021 0050 0101 0234 0345

Sorted array

Base 100: Base 10:
e d=2,soonly 2 iterations. V> e d=3, so 3 iterations.
* 100 buckets e 10 buckets

Bigger base means more buckets but fewer iterations. 51

General running time of RadixSort

* Say we want to sort:
* nintegers,
* maximum size M,
* in baser.

* Number of iterations of RadixSort:
* Same as number of digits, base r, of an integer x of max size M.

* Thatisd = llOgr(M)J +1 Convince yourself that

* Time per iteration:]EQ'rS dis the right formula
e Initialize r buckets, put n items into them | Y
* O(n + r) total time.

* Total time:
. O(d - (n+ r)) = 0((llog,(M)|+1) - (n+ r))

52

Running time (ms)

30

25

2.0

15 A1

10 -

0.5 -

0.0

Trade-offs

Running time: 0((llog,.(M)|+ 1) -(n+ r))

e Given n, M, how should we choose r?

* Looks like there’s some sweet spot:

Effect of base on running time of radixSort (n=100)

¢ — M=10

¢ —-= M=1000 _
¢ === M=1000000 .7
- M=1000000000 .

12 . -
I -
e <

l‘ ". /l

i|‘ W ettt L’

! o pmmmmmTT — ——
. N == N

.‘ A _"\’ N -__././

150

200 250 300 350

baser

100

Running time (ms)

25 4

20 A

15 1

10 1

0.5 4

0.0

Effect of base on running time of radixSort (M=1000)

14

(4
L
l:l
|:
f
- ~
!.."- et 4 \\~
....... 4 halN
T ;
do L L e ’
l| ..-'- an"" 7
1 . 4
1 -
I\ pp——— o — -
el mm———— ‘/'
‘ \ . AN -

T

150 200 250

baser

100 300

IPython Notebook for Lecture®

A reasonable choice: r=n

* Running time:

| .
O((llog,(M)] + 1) (n\+ /r))

Intuition: balance n and r here.
* Choose n=r:

0(n - (llog,(M)] +1))

Choosing r = n is pretty good. What choice of r optimizes the
asymptotic running time? What if | also care about space?

Ollie the over-achieving ostrich

Running time of RadixSort with r=n

* To sort n integers of size at most M, time is

O(n - (llog,(M)] + 1))
* So the running time (in terms of n) depends on how big
M is in terms of n:
e If M < n® for some constant c, then this is O(n).

. A7 o n?
If M = 2", then thisis O (log(n))

* The number of buckets needed is r=n.

55

You can put any

What have we learned? constant here

instead of 100.

/

* RadixSort can sort n integers of size at most n!% in
time O(n), and needs enough space to store O(n)
integers.

* If your integers have size much much bigger than n
(like 2"), maybe you shouldn’t use RadixSort.

* It matters how we pick the base.

OrTsS : Al YOIIiD BACE ADE BEI NNG

TO 1S,

Recap

* How difficult sorting is depends on the model of
computation.

* How reasonable a model of computation is is up for debate

* Comparison-based sorting model

* This includes MergeSort, QuickSort, InsertionSort M

e Any algorithm in this model must use at least Q(n log(n))
operations. ®

* But it can handle arbitrary comparable objects. ©

* If we are sorting small integers (or other reasonable data):
* CountingSort and RadixSort ¥
* Both run in time O(n) © L
* Might take more space and/or be slower if integers get toosloig ®

Next time

* Binary search trees!
* Balanced binary search trees!

next time

* Pre-lecture exercise for Lecture 7
e Remember binary search trees?

58

59

