Lecture /

Binary Search Trees and Red-Black Trees

Announcements

* Homework 3 is due today.
* Homework 4 will be out today.

* From HW4 onwards you are allowed pair
submissions (but solo is OK too).

* Midterm approaching: Wed, Feb 11 (6 — 9pm)
* Midterm covers up to (and incl.) lecture 7 — today

More detailed schedule on the website!

ROadmap /\Weare here

Divide and
conquer

Dynamic
Programming

Greedy Algs

Future!

But first!

* A brief wrap-up of divide and conquer.

Divide and
Conquer:

Big problem

Smaller SENET
problem problem

Recurse! Recurse!

Yet smaller Yet smaller Yet smaller Yet smaller
problem problem problem problem

How do we design divide-and-
conquer algorithms?

* So far we've seen lots of examples.
e Karatsuba
* MergeSort
* Select
* QuickSort
Alien Arithmetic (HW1)
Faster Exponentiation (HW?2)
Dancing Ducks (HW3)
e Sections: Maximum Sum Subarray, ...

e Let’s take a minute to zoom out and look at some
general strategies.

One Strategy

1. Identify natural sub-problems
* Arrays of half the size
* Things smaller/larger than a pivot

2. Imagine you had the magical ability to solve
those natural sub-problems...what would you do?

 Just try it with all of the natural sub-problems you can
come up with! Anything look helpful?

3. Work out the details
* Write down pseudocode, etc.

One Strategy

ldentify natural sub-problems

2. Imagine you had the magical ability to solve
those natural sub-problems...what would you do?

3. Work out the details

Think about how you could
arrive at MergeSort or

QuickSort via this strategy!

Other tips

* Small examples.
* If you have an idea but are having trouble working out the
details, try it on a small example by hand.
* Gee, that looks familiar...
* The more algorithms you see, the easier it will get to come
up with new algorithms!
e Bring in your analysis tools.

e E.g., if ’'m doing divide-and-conquer with 2 subproblems of
size n/2 and | want an O(n logn) time algorithm, | know that |
can afford O(n) work combining my sub-problems.

* |terate.
e Darn, that approach didn’t work! But, if | tweaked this aspect
of it, maybe it works better?

* Everyone approaches problem-solving differently...find
the way that works best for you.

No one recipe for algorithm design

* This can be frustrating on HW....

* Practice helps!

* The examples we see in Lecture and in HW are meant to
help you practice this skill.

* Sections are the BEST place to practice!

* There are even more algorithms in the book!

* Check out Algorithms llluminated Chapter 3, or CLRS
Chapter 4, for even more examples of divide and conquer
algorithms.

More detailed schedule on the website!

ROadmap /\Weare here

Divide and
conquer

Dynamic
Programming

Greedy Algs

Future!

(£
Today () ©

o
* Begin a brief foray into data structures! @ \@

* See CS 166 for more!

* Binary search trees

* You may remember these from CS 106B
* They are better when they’re balanced.

this will lead us to...

 Self-Balancing Binary Search Trees
* Red-Black trees.

Some data structures
for storing objects like (aka, nodes with keys)

* (Sorted) arrays:

1j2)3fafs|7]s

e Linked lists:

HEAD

* Some basic operations:
* INSERT, DELETE, SEARCH

Sorted Arrays [1]2]3]4]ls5][7]8

* O(n) INSERT/DELETE:

* First, find the relevant element (we’ll see how below), and
then move a bunch elements in the array:

1j2)3fafes|7]8

» O(log(n)) SEARCH: & nserta>

EEEEEEH

eg, Binary search to see if 3isin A.

(Not necessarily sorted)

Linked lists
4 8

e O(1) INSERT:

eg, insert 6

HEAD
e}

eg, search for 1 (and then you could delete it by manipulating pointers).

Motivation for Binary Search Trees
TODAy;

(Balanced)
Binary Search

Trees

Sorted Arrays | Linked Lists

O(Iog(n) O(n) w“ O(log(n)) L)
Delete O(n) @ O(n)@ O(Iog(n))

O(n) @ O(1) O(Iog(n))

For today all keys are distinct.

Binary tree terminology

This is a node.
It has a key (7).

Each node has two children. This node i

th t
The left child ofis eroot N\ .
The right child of ism

The parent of is
is a descendant of

Each node has a pointer to its
left child, right child, and parent.

Both children of are NIL.

(I won’t usually draw them).

These nodes
are leaves.

The height of this tree is 3.

(Max length of path from the root
to a leaf).

From your pre-lecture exercise...

Binary Search Trees
 ABST is a binary tree so that:

* Every LEFT descendant of a node has key less than that node.
* Every RIGHT descendant of a node has key larger than that node.

* Example of building a binary search tree:

From your pre-lecture exercise...

Binary Search Trees
 ABST is a binary tree so that:

* Every LEFT descendant of a node has key less than that node.
* Every RIGHT descendant of a node has key larger than that node.

* Example of building a binary search tree:

8

~

From your pre-lecture exercise...

Binary Search Trees
 ABST is a binary tree so that:

* Every LEFT descendant of a node has key less than that node.
* Every RIGHT descendant of a node has key larger than that node.

* Example of building a binary search tree:

From your pre-lecture exercise...

Binary Search Trees
 ABST is a binary tree so that:

* Every LEFT descendant of a node has key less than that node.
* Every RIGHT descendant of a node has key larger than that node.

* Example of building a binary search tree:

From your pre-lecture exercise...

Binary Search Trees

 ABST is a binary tree so that:

* Every LEFT descendant of a node has key less than that node.
* Every RIGHT descendant of a node has key larger than that node.

* Example of building a binary search tree:

Q: Is this the only
binary search tree |
could possibly build

with these values?

A: No. | made
choices about
which nodes to
choose when. Any
choices would
have been fine.

Aside: this should look familiar
kinda like QuickSort

Which of these is a BST?
1 minute Think-Pair-Share

Binary Search Trees .,‘

 ABST is a binary tree so that:

* Every LEFT descendant of a node has key less than that node.
* Every RIGHT descendant of a node has key larger than that node.

NOT a Binary
Search Tree

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

2 3 4

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

2 3 4

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
* if x!= NIL:
* inOrderTraversal(x.left)

* print(x.key)

* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
 if x!=NIL:
* inOrderTraversal(x.left)
* print(x.key)
* inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

e Output all the elements in sorted order!

* inOrderTraversal(x):
 if x!=NIL:
* inOrderTraversal(x.left)
* print(x.key)
* inOrderTraversal(x.right)

 Runsintime O(n). 2 34 5 7 sorted

Back to the goal

Fast SEARCH/INSERT/DELETE

Can we do these?

SEARCH in a Binary Search Tree

definition by example

EXAMPLE: Search for 4.
EXAMPLE: Search for 4.5

* It turns out it will be convenient
to return 4 in this case

e (thatis, return the last node
before we went off the tree)

Write pseudocode
(or actual code) to
implement this!

How long does this take?

O(length of longest path) = O(height)

Ollie the over-achieving ostrich

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

* INSERT(key):
* x=SEARCH(key)
* Insert a new node with
desired key at x...

You thought about this on
your pre-lecture exercise!
(See skipped slide for
pseudocode.)

DELETE in a Binary Search Tree

EXAMPLE: Delete 2

* DELETE(key):
e x=SEARCH(key)
e if x.key == key:
e ...deletex....

\

You thought about this in your pre-
lecture exercise too!

This is a bit more complicated...see
the skipped slides for some pictures
of the different cases.

How long do these operations take?
* SEARCH is the big one.

e Everything else just calls SEARCH and then does some
small O(1)-time operation.

1 Time = O(height of tree)

Trees have depth

O(log(n)). Done! Wait a
, second...

How long does search take?

& 5

1 minute Think—Pair—Share

~

Lucky the Plucky the
lackadaisical lemur. Pedantic Penguin

Search might take time O(n).

* This is a valid binary search tree.

* The version with n nodes has
depth n, not O(log(n)).

How often is “every so
often” in the worst case?

W h at tO d O ? It’s actually pretty often!

Ollie the over-achieving ostrich

e Goal: Fast SEARCH/INSERT/DELETE
 All these things take time O(height)
* And the height might be big!!! ®

e |dea O:

* Keep track of how deep the tree is getting.

* |f it gets too tall, re-do everything from scratch.
e At least Q(n) every so often....

* Turns out that’s not a great idea. Instead we turn to...

Selt-Balancing
Binary Search Trees

ldea 1: Rotations

* Maintain Binary Search Tree (BST) property, while
moving stuff around.

Note: A, B, C, X, Y are
variable names, not the
contents of the nodes.

YOINK!

-~ ’}Z\N

THAT'S Nor
BINARY!!

Sfop

A

B fell
down.

CLAIM:

No matter what lives underneath A,B,C,
this takes time O(1). (Why?)

A N

B

C

A

A

this still has BST property.

This seems helpful

Strategy?

 Whenever something seems unbalanced, do
rotations until it’s okay again.

Even for Lucky this is pretty vague.
What do we mean by “seems
unbalanced”? What’s “okay”?

Lucky the Lackadaisical Lemur

ldea 2: have some proxy for balance

* Maintaining perfect balance is too hard.

* Instead, come up with some proxy for balance:

* If the tree satisfies [SOME PROPERTY], then it’s pretty
balanced.

* We can maintain [SOME PROPERTY] using rotations.

There are actually several
ways to do this, but today
we’ll see...

Red-Black Trees

* A Binary Search Tree that balances itself!

* No more time-consuming by-hand balancing!

* Be the envy of your friends and neighbors
with the time-saving..

2l B !

Maintain balance by stipulating that § :

black nodes are balanced, and that /
there aren’t too many red nodes.

Tt ¢ just good sense!

Red-Black Trees

obey the following rules (which are a proxy for balance)

* Every node is colored red or black.
* The root node is a black node.
 NIL children count as black nodes.

* Children of a red node are black nodes. 5

* For all nodes x:

* all paths from x to NIL's have the same 3
number of black nodes on them.

A KN 1 K

I’'m not going to draw the NIL
children in the future, but they NIL B NIL J NIL @ NIL @ NIL § NIL § NIL § NIL
are treated as black nodes.

Examples(?)

Which of these

Every node is colored red or black.

The root node is a black node.

NIL children count as black nodes.
Children of a red node are black nodes.

For all nodes x:

 all paths from x to NILs have the same
number of black nodes on them.

are red-black trees?

%'/ (NIL nodes not drawn)
1 minute think

" 1 minute share

NoO!

NoO! NO

* This is pretty balanced.
* The black nodes are balanced

* The red nodes are “spread out”
so they don’t mess things up
too much.

* We can maintain this property
as we insert/delete nodes, by
using rotations.

This is the really clever idea!

This Red-Black structure is a proxy for balance.
It’s just a smidge weaker than perfect balance, but we can actually maintain it!

Let’s build some intuition!

> =@ £

) Lucky the
lackadaisical
lemur

This is “pretty balanced”

* To see why, intuitively, let’s try to build a
Red-Black Tree that’s unbalanced.

One path can be at most twice
as long another if we pad it
with red nodes.

Conjecture:
the height of a red-black tree toyeere o

intuition! We’'ll prove a

with n nodes is at most 2 log(n) riorous statement on

the next slide.

The height of a RB-tree with n
is at most 2log(n + 1)

* Define b(x) to be the number of black
nodes in any path from x to NIL.

e (excluding x, including NIL).

e Claim:

e There are at least 2PX) — 1 non-NIL
nodes in the subtree underneath x.
(Including x).

* [Proof by induction — on board if time]

Then: Claim: at least 2°X) — 1 nodes in this

WHOLE subtree (of any color).
n > Zb(TOOt) —1 using the Claim

height /2
= 2 ght/2 _ 1 b(root) >= height/2 because of RBTree rules.

Rearranging:

n+ 1> 2teight/2 = peight < 2log(n + 1)

This is great!

 SEARCH in an RBTree is immediately O(log(n)), since
the depth of an RBTree is O(log(n)).

* What about INSERT/DELETE?

e Turns out, you can INSERT and DELETE items from an
RBTree in time O(log(n)), while maintaining the RBTree
property.

e That’s why this is a good property!

INSERT/DELETE

* | expect we are out of time...

* There are some slides which you can check out to see how
to do INSERT/DELETE in RBTrees if you are curious.

e See CLRS Ch 13. for even more details.

* You are not responsible for the details of
INSERT/DELETE for RBTrees for this class.

* You should know what the “proxy for balance” property is
and why it ensures approximate balance.

* You should know that this property can be efficiently
maintained, but you do not need to know the details of how.

INSERT: Many cases

Al AL AL

* Suppose we want to insert 0 here.

* There are 3 “important” cases for different colorings of
the existing tree, and there are 9 more cases for all of
the various symmetries of these 3 cases.

INSERT:; Case 1

* Make a new red node.
* Insert it as you would normally. What if it looks like this?

Example: insert O

INSERT: Many cases

zﬁ zafl

* Suppose we want to insert 0 here.

 There are 3 “important” cases for different colorings
of the existing tree, and there are 9 more cases for all
of the various symmetries of these 3 cases.

INSERT: Case 2

 Make a new red node.

* Insert it as you would normally. What if it looks like this?

* Fix things up if needed.
Example: insert O

No!

INSERT:; Case 2

* Make a new red node.
* Insert it as you would normally. What if it looks like this?

* Fix things up if needed.
Example: insert O

Can’t we just insert O as
a black node?

NO!

We need a bit more context

What if it looks like this?

Example: insert O

We need a bit more context

e Add O as ared node.

What if it looks like this?

Example: insert O

We need a bit more context

e Add O as ared node.

* Claim: RB-Tree

properties still hold. What if it looks like this?

Example: insert O

6 Flip
colors!

7/

A

But what if that was red?

What if it looks like this?

Example: insert O

More context...

-3

What if it looks like this?

Example: insert O

More context...

/

-3

~

What if it looks like this?

Example: insert O

Now we’re basically
inserting 6 into some

smaller tree. Recurse!
This one!

Example, part |

4

Want to
insert O
here.

Example, part |

Example, part |

\ Flip colors!

/

Example, part |

e

~

Need to know how
to insert into trees
that look like this...

\ Want to

insert 6 here.

T~

INSERT: Many cases That’s this
case!

zﬁ zafl

* Suppose we want to insert 0 here.

 There are 3 “important” cases for different colorings
of the existing tree, and there are 9 more cases for all
of the various symmetries of these 3 cases.

INSERT; Case 3

* Make a new red node.
* Insert it as you would normally. What if it looks like this?
* Fix things up if needed.

Example: Insert 0.
* Maybe with a
subtree below it.

Recall Rotations

* Maintain Binary Search Tree (BST) property, while
moving stuff around.

YOINK!

~ ’Z/z\x el /\

X
Al |B _— C B| [C
/\ /\ B'”Azg?T A aamv: A aN

this still has BST property.

Inserting into a Red-Black Tree

e Make a new red node.

* Insert it as you would normally.

* Fix things up if needed.
YOINKI

/~ Ra

What if it looks like this?

Argue that this is a
good thing to do!

v

Example, part 2

Want to
insert 6 here.

Example, part 2

YOINK!

YOINK!

Example, part 2 YOINK!

Example, part 2

Many cases

* Suppose we want to insert 0 here.

 There are 3 “important” cases for different colorings
of the existing tree, and there are 9 more cases for all
of the various symmetries of these 3 cases.

Deleting from a Red-Black tree

Fun exercise!

Ollie the over-achieving ostrich

That’s a lot of cases!

* You are not responsible for the nitty-gritty details
of Red-Black Trees. (For this class)

* Though implementing them is a great exercise!

* You should know:
 What are the properties of an RB tree?

* And (more important) why does that guarantee that
they are balanced?

What have we learned?

* Red-Black Trees always have height at most 2log(n+1).

* As with general Binary Search Trees, all operations are
O(height)

* So all operations with RBTrees are O(log(n)).

Conclusion: The best of both worlds

Binary Search
Trees™

Sorted Arrays | Linked Lists

O(Iog(n) O(n) w“ O(log(n)) L)
Delete O(n) @ O(n)@ O(Iog(n))

O(n) @ O(1) O(Iog(n))

(£
Today () &

o
* Begin a brief foray into data structures! @ \@

* See CS 166 for more!

* Binary search trees

* You may remember these from CS 106B
* They are better when they’re balanced.

this will lead us to...

 Self-Balancing Binary Search T
* Red-Black trees.

Recap

Recap

* Balanced binary trees are the best of both worlds!
* But we need to keep them balanced.

* Red-Black Trees do that for us.
* We get O(log(n))-time INSERT/DELETE/SEARCH
* Clever idea: have a proxy for balance

r
Ty

Next time

* Hashing!

Before next time

* Pre-lecture exercise for Lecture 8
* More probability yay!

