CS 161 (Stanford, Winter 2026) Lecture 8

Adapted From Virginia Williams' lecture notes. Additional credits go to Luke Johnson,
Moses Charikar, Gregory Valiant.
Please direct all typos and mistakes to Ellen Vitercik and Moses Charikar.

Hashing

1 Hash tables

A hash table is a commonly used data structure to store an unordered set of items, allowing
constant time inserts, lookups and deletes (in expectation). Every item consists of a unique
identifier called a key and a piece of information. For example, the key might be a Social
Security Number, a driver's license number, or an employee ID number. The way in which a
hash table stores a item depends only on its key, so we will only focus on the key here, but
keep in mind that each key is usually associated with additional information that is also stored
in the hash table.

A hash table supports the following operations:
e Insert(k): Insert key k into the hash table.
e Lookup(k): Check if key k is present in the table.
e Delete(k): Delete the key k from the table.

Each operation will take constant time (in expectation).

1.1 Implementation

Let U be the universe of all keys. For example, U could be the set of all 64 bit strings. In
this case |U| = 254, This is a very large universe, but we do not need to store all of these
2% keys, we only need to store a subset S C U. Suppose that we know that the size of the
subset we will need to store is less than or equal to n, which is much less than the size of
the universe |U|. In a hash table of size n, each key k € U is mapped to one of n “buckets”
by a hash function h: U — {0,1,2,..., n—1}. Since the universe U is much larger than
n, multiple keys could map to the same hash bucket. To accommodate this, each bucket
contains a linked list of keys currently stored in that bucket.

Example

Suppose we have a hash table of size n =5 with hash function h(x) = 13x+2 mod 5. After
inserting the elements {1,2,4,7,8} the hash table looks like this:

Bo| 11
Bl——+8
B,| b NIL
Bs ——+2—>7
84——+4

Where arrows denote pointers in the linked lists, and B> is empty. For example, 1 is placed
into bucket By because h(1) =15 mod 5 = 0.

Time complexity

With this setup, the time required to perform an Insert, Lookup, or Delete operation on key k
is linear in the length of the linked list for the bucket that key k maps to. We just use the
hash function to find the correct bucket for an input key k, and then search the corresponding
linked list for the element, inserting or deleting if necessary. Note that an Insert could be
performed in constant time by always inserting at the head of the list, but we first need to
check if key k is already present.

Choice of size of hash table

The hash table size is usually chosen so that the size of the hash table is at least as large as
the maximum number of keys we will need to store at any point of time. If this condition is
violated and the number of keys stored grows much larger than the size of the hash table, an
implementation will usually increase the size of the table, and recompute the new table from
scratch by mapping all keys to the bigger table. Our analysis ignores these complications and
assumes that the number of keys is at most the hash table size.

Potential problem with this implementation

In order for the operations to be implemented efficiently, we would like the keys to be distributed
uniformly amongst the buckets in the hash table. We might hope that all buckets have at
most a constant number of keys mapped to them, so that all operations could be performed
in constant time. But for any fixed choice hash function h, one can always produce a subset
of keys S such that all keys in S are mapped to the same location in the hash table. In this
case, the running times of all operations will be linear in the number of keys — far from the
constant we were hoping for. Thus, for a fixed hash function h, it is impossible to give worst
case guarantees for the running times of hash table operations.

Possible solutions
There are two styles of analysis that we could use to circumvent this problem:

1. Assume that the set of keys stored in the hash table is random, or

2. Assume that the hash function h is random.

Both are plausible alternatives. The problem with the first alternative is that it is hard to
Jjustify that the set of keys stored in the hash table is truly random. It would be more satisfying
to have an analysis that works for any subset of keys currently in the hash table. In these
notes, we will explore the second alternative, i.e., assume that the hash function h is random.

1.2 Hashing with a completely random hash function

What does it mean for h to be random? One possibility is that h is chosen uniformly and at
random from amongst the set of all hash functions h: U — {0,1,...,n—1}. In fact picking
such a hash function is not really practical. Note that there are nYl possible hash functions.
Representing just one of these hash functions requires log (nlY!) = |U| - log n bits. In fact,
this means we need to write down h(x) for every x € U in order to represent h. That's a
lot of storage space! Much more than the size of the set we are trying to store in the hash
table. One could optimize this somewhat by only recording h(x) for all keys x seen so far (and
generating h(x) randomly on the fly when a new x is encountered), but this is impractical too.
How would we check if a particular key x has already been encountered? Looks like we would
need a hash table for that. But wait, isn't that what we set out to implement? Overall, it is
clear that picking a completely random hash function is completely impractical.

Despite this, we will analyze hashing assuming that we have a completely random hash function
and then explain how this assumption can be replaced by something that is practical.

Expected cost of hash table operations with random hash function

What is the expected cost of performing any of the operations Insert, Lookup, or Delete with
a random hash function? Suppose that the keys currently in the hash table are x;, ..., Xp.
Consider an operation involving key x;. The cost of the operation is linear in the size of the
hash bucket that x; maps to. Let X be the size of the hash bucket that x; maps to. X is a
random variable and

E[X] = > Plh(x) = h(x)]
=1+ > P[h(x) = h(x)]
1

n

Here the last step follows from the fact that P[h(x;) = h(x;)] = 1/n when h is random. Note
that each key appears in the hash table at most once.

Thus the expected cost of any hashing operation is a constant.

1.3 Universal hash functions

Can we retain the expected cost guarantee of the previous section with a much simpler (i.e.,
practical) family of hash functions? In the analysis of the previous section, the only fact we
used about random hash functions was that P[h(x;) = h(x;)] = 1/n. Is it possible to construct
a small, practical subset of hash functions with this property?

Thinking along these lines, in 1978, Carter and Wegman introduced the notion of universal
hashing: Consider a family F of hash functions from U to {0, 1, ..., n—1}. We say that F is
universal if, for every x; # x;, for an h chosen randomly from F, P[h(x;) = h(x;)] < 1/n.

Clearly the analysis of the previous section shows that for any universal family, the constant
expected running time guarantee applies. The family of all hash functions is universal. Is there
a simpler universal family?

1.4 A universal family of hash functions

Suppose that the elements of the U are encoded as non-negative integers in the range
{0,...,|U] — 1}. Pick a prime p > |U|. For a,b € {0,...p— 1}, consider the family of hash
functions

hap(x) = (ax+b mod p) mod n.

where a € {1,..., p—1}and be {0,1,..., p—1}.
Proposition 1. This family of hash functions F is universal.

In order to prove this statement, first, let’'s count the number of hash functions in this family
F. We have p—1 choices for a, and p choices for b, so |F| = p(p—1). In order to prove that
F is universal, we need to show that for an h chosen randomly from F, P[h(x;) = h(x;)] < 1/n.
Since there are p(p — 1) hash functions in F, this is equivalent to showing that the number
of hash functions in F that map x; and x; to the same output is less than or equal to @.
To show that this is true, first consider how h,, behaves without the mod n. Call these
functions f, :

fap(x) =ax+b modp
The f, have the following useful property:

Proposition 2. For a given xi, xo, y1, > € {0,..., p — 1} such that x; # x> there exists only
one function f,, such that

f:;;,b(Xl) =y, and
fan(X2) = yo

Proof. Solve the above two equations for a and b:

axx,+b=y; (mod p)
axo + b=y, (mod p)

By subtracting the two equations, we get:

a(xi —x2) =y1 —y> (mod p)

Since p is prime and x; # x,, the above equation has only one solution for a€ {0,...,p—1}.
Then
b=yi—ax; (mod p)

So we have found the unique a and b such that f, ,(x1) = y1 and £, ,(x2) = y». H

In the above proof, note that a = 0 only when y; = y» = b. This is why we restrict a # 0, we
don't want the hash function mapping all elements to the same value b.

Now, we have shown that for a given xq, x,, for each selection of yi, y» with y; # y», there is
exactly one function f,, that maps x; to y; and x> to y». So, in order to find out how many
functions h, , map x; and x, to the same value mod n, we just need to count the number of
pairs (y1,y») where y1 # y» and y1 = y» (mod n). There are p possible selections of y; for
this pair, and then < (p — 1)/n of the possibilities for y» will be equal to y; mod n. (Convince
yourself that this is true.) This gives a total of p(p—n_l) functions h,, that map x; and x, to
the same element. So then

p(p—1)/n
I
p(p—1)
p(p —1)(n)

Plha(x1) = hap(x2)] <

which means the family F of the h,, is universal, as desired.

Wrapping up the discussion on hashing, if we pick a random hash function from this family,
then the expected cost of any hashing operation is constant. Note that picking a random
hash function from the family simply involves picking a, b — significantly simpler than picking
a completely random hash function.

2 Balls and bins

A useful abstraction in thinking about hashing with random hash functions is the following
experiment: Throw m balls randomly into n bins. (The connection to hashing should be clear:
the balls represent the keys and the bins represent the hash buckets.) The balls into bins
experiment arises in several other problems as well, e.g., analysis of load balancing. In the
context of hashing, the following questions arise about the balls and bins experiment:

e How large does m have to be so that with probability greater than 1/2, we have (at
least) two balls in the same bin? This tells us how large our hash table needs to be to
avoid any collisions. We will explore this at the end of these notes.

e Suppose m = n; what is the maximum number of balls that fall into a bin? This tells us
the size of the largest bucket in the hash table when the number of keys is equal to the
number of buckets in the table. We might explore this in the next homework.

No collisions

The first question is related to the so called birthday paradox: Suppose you have 23 people
in a room. Then (somewhat surprisingly) the probability that there exists some pair with
the same birthday is greater than 1/2! (This assumes that birthdays are independent and
randomly distributed.) 23 seems like an awfully small number to get a pair with the same
birthday. There are 365 days in a year! How do we explain this? Consider throwing m balls
into n bins. The expected number of pairs that fall into the same bucket is m(m — 1)/2n.
(This follows from linearity of expectation. Note that the probability that a fixed pair falls into
the same bucket is 1/n.) Thus the probability that there is a collision is upper bounded by the
expected number of collisions which is m(m — 1)/2n. (Convince yourself that this is true.)
On the other hand, we can also show that the probability that all m balls fall into distinct bins
is at most e~ m(m=1)/2n.

Proof. 1
P[no collisions] = <1 — i)

Now, we use the fact that (1 — x) < e
/ .
1—-)<e™n
(1-2)<

So

m—1
P[no collisions] < H e~ !/n
i=1
P[no collisions] < eXr1 ~i/n
P[no collisions] < e(=m(m=1)/(2n)

[]

For m about /(2In2)n = 1.184/n this probability is less than 1/2, i.e., the probability of a
collision is greater than 1/2.

This is a useful design principle to keep in mind: If we want to design a hash table with no
collisions, then the size of the hash table should be larger than the square of the number of
elements we need to store in it. For our purposes in this note, insisting on no collisions means
that the number of elements in the hash table can only be a small fraction of the hash table
size which is quite wasteful.

The birthday problem calculation is useful in other contexts. Here is an application: Suppose
we assign random b-bit IDs to m users. How large does b have to be to ensure that all users

have distinct IDs with probability 1 — . Here § > 0 is a given error tolerance. Assigning b-bit
IDs is identical to mapping to n = 2° buckets. The birthday problem calculation shows us
that the probability of a collision is at most m?/2n = m?/2°*1. We should set b large enough
such that this bound is at most . Thus b should be at least 2logm — 1 4 log(1/§).

	Hash tables
	Implementation
	Hashing with a completely random hash function
	Universal hash functions
	A universal family of hash functions

	Balls and bins

