
CS 161 (Stanford, Winter 2026) Lecture 9
Adapted From Virginia Williams’ lecture notes. Additional credits go to Romil Veram,
Juliana Cook, Seth Hildick-Smith, Gregory Valiant, Mary Wootters.
Please direct all typos and mistakes to Ellen Vitercik and Moses Charikar.

Graphs, DFS, and BFS

1 Graphs

A graph is a set of vertices and edges connecting those vertices. Formally, we define a graph
G as G = (V, E) where E ⊆ V × V . For ease of analysis, the variables n and m typically
stand for the number of vertices and edges, respectively. Graphs can come in two flavors,
directed or undirected. If a graph is undirected, it must satisfy the property that (i , j) ∈ E
iff (j, i) ∈ E (i.e., all edges are bidirectional). In undirected graphs, m ≤ n(n−1)

2
. In directed

graphs, m ≤ n(n − 1). Thus, m = O(n2) and logm = O(log n). A connected graph is a
graph in which for any two nodes u and v there exists a path from u to v . For an undirected
connected graph m ≥ n − 1. A sparse graph is a graph with few edges (for example, Θ(n)
edges) while a dense graph is a graph with many edges (for example, m = Θ(n2)).

1.1 Representation

A common issue is the topic of how to represent a graph’s edges in memory. There are two
standard methods for this task.

An adjacency matrix uses an arbitrary ordering of the vertices from 1 to |V |. The matrix
consists of an n× n binary matrix such that the (i , j)-th element is 1 if (i , j) is an edge in the
graph, 0 otherwise.

An adjacency list consists of an array A of |V | lists, such that A[u] contains a linked list of
vertices v such that (u, v) ∈ E (the neighbors of u). In the case of a directed graph, it’s also
helpful to distinguish between outgoing and ingoing edges by storing two different lists at
A[u]: a list of v such that (u, v) ∈ E (the out-neighbors of u) as well as a list of v such that
(v , u) ∈ E (the in-neighbors of u).

What are the tradeoffs between these two methods? To help our analysis, let deg(v) denote
the degree of v , or the number of vertices connected to v . In a directed graph, we can
distinguish between out-degree and in-degree, which respectively count the number of outgoing
and incoming edges.

• The adjacency matrix can check if (i , j) is an edge in G in constant time, whereas the
adjacency list representation must iterate through up to deg(i) list entries.

1

• The adjacency matrix takes Θ(n2) space, whereas the adjacency list takes Θ(m + n)
space.

• The adjacency matrix takes Θ(n) operations to enumerate the neighbors of a vertex v
since it must iterate across an entire row of the matrix. The adjacency list takes deg(v)
time.

What’s a good rule of thumb for picking the implementation? One useful property is the
sparsity of the graph’s edges. If the graph is sparse, and the number of edges is considerably
less than the max (m ≪ n2), then the adjacency list is a good idea. If the graph is dense
and the number of edges is nearly n2, then the matrix representation makes sense because
it speeds up lookups without too much space overhead. Of course, some applications will
have lots of space to spare, making the matrix feasible no matter the structure of the graphs.
Other applications may prefer adjacency lists even for dense graphs. Choosing the appropriate
structure is a balancing act of requirements and priorities.

2 Depth First Search (DFS)

Given a starting vertex, it’s desirable to find all vertices reachable from the start. There
are many algorithms to do this, the simplest of which is depth-first search. As the name
implies, DFS enumerates the deepest paths, only backtracking when it hits a dead end or an
already-explored section of the graph. DFS by itself is fairly simple, so we introduce some
augmentations to the basic algorithm.

• To prevent loops, DFS keeps track of a “color” attribute for each vertex. Unvisited
vertices are white by default. Vertices that have been visited but still may be backtracked
to are colored gray. Vertices which are completely processed are colored black. The
algorithm can then prevent loops by skipping non-white vertices.1

• Instead of just marking visited vertices, the algorithm also keeps track of the tree
generated by the depth-first traversal. It does so by marking the “parent” of each visited
vertex, aka the vertex that DFS visited immediately prior to visiting the child.

• The augmented DFS also marks two auto-incrementing timestamps d and f to indicate
when a node was first discovered and finished.

The algorithm takes as input a start vertex s and a starting timestamp t, and returns the
timestamp at which the algorithm finishes. Let N(s) denote the neighbors of s; for a directed
graph, let Nout(s) denote the out-neighbors of s.

1In the slides, white, gray, and black are replaced with light green, orange, and dark green, respectively.

2

Algorithm 1: init(G)

foreach v ∈ G do
color(v) ← white
d(v), f(v) ←∞
p(v) ← nil

Algorithm 2: DFS(s, t): s ∈ V is white, t = time

color(s) ← gray
// d(s) is the discovery time of s
d(s) ← t
t ← t + 1
// In the loop below, replace N(s) with Nout(s) for directed G.
foreach v ∈ N(s) do

if color(v) = white then
p(v) ← s
// Update t to be the finish time of DFS starting at v.
t ← DFS(v , t)
t ← t + 1

// Finish time:
f(s) ← t
// s is finished.
color(s) ← black
return f(s)

There are multiple ways we can search using DFS. One way is to search from some source
node s, which will give us a set of black nodes reachable from s and white nodes unreachable
from s.

Algorithm 3: DFS(s): DFS from a source node s

init(G)
DFS(s, 1)

Another way to use DFS is to search over the entire graph, choosing some white node and
finding everything we can reach from that node, and repeating until we have no white nodes
remaining. In an undirected graph this will give us all of the connected components.

3

Algorithm 4: DFS(G): DFS on an entire graph G

init(G)
t ← 1
foreach v ∈ G do

if color(v) = white then
t ← DFS(v , t)
t ← t + 1

2.1 Runtime of DFS

We will now look at the runtime for the standard DFS algorithm (Line 2).

Everything above the loop runs in O(1) time per node visit. Excluding the recursive call,
everything inside of the for loop takes O(1) time every time an edge is scanned. Everything
after the for loop also runs in O(1) time per node visit.

We can express the runtime of DFS as O(# of node visits+# of edge scans). Assume we
have a graph with n nodes and m edges. We know that the # of node visits is ≤ n, since we
only visit white nodes and whenever we visit a node we change its color from white to gray
and never change it back to white again. We also know that an edge (u, v) is scanned only
when u or v is visited. Since every node is visited at most once, we know that an edge (u, v)
is scanned at most twice (or only once for directed graphs). Thus, # of edges scanned is
O(m), and the overall runtime of DFS is O(m + n).

2.2 DFS Example

We will now try running DFS on the example graph below.

a

b c

d

e

f

We mark all of the nodes as unvisited and start at a white node, in our case node a.

4

a
(1,

b
unvisited

c
unvisited

d
unvisited

e
unvisited

f
unvisited

From node a we will visit all of a’s children, namely node b.

a
(1,

b
(2,

c
unvisited

d
unvisited

e
unvisited

f
unvisited

We now visit b’s child, node c.

a
(1,

b
(2,

c
(3,

d
unvisited

e
unvisited

f
unvisited

Node c has two children that we must visit. When we try to visit node a we find that node a
has already been visited (and would be colored gray, as we are in the process of searching a’s
children), so we do not continue searching down that path. We will next search c’s second
child, node d.

5

a
(1,

b
(2,

c
(3,

d
(4,

e
unvisited

f
unvisited

Since node d has no children, we return back to its parent node, c, and continue to go back
up the path we took, marking nodes with a finish time when we have searched all of their
children.

a
(1, 8)

b
(2, 7)

c
(3, 6)

d
(4, 5)

e
unvisited

f
unvisited

Once we reach our first source node a we find that we have searched all of its children, so we
look in the graph to see if there are any unvisited nodes remaining. For our example, we start
with a new source node e and run DFS to completion.

a
(1, 8)

b
(2, 7)

c
(3, 6)

d
(4, 5)

e
(9, 12)

f
(10, 11)

6

3 Breadth First Search (BFS)

In depth first search, we search “deeper" in the graph whenever possible, exploring edges
out of the most recently discovered node that still has unexplored edges leaving it. Breadth
first search (BFS) instead expands the frontier between discovered and undiscovered nodes
uniformly across the breadth of the frontier, discovering all nodes at a distance k from the
source node before nodes at distance k + 1.

BFS(s) computes for every node v ∈ G the distance from s to v in G. d(u, v) is the length
of the shortest path from u to v .

A simple property of unweighted graphs is as follows: let P be a shortest u → v path and let
x be the node before v on P . Then d(u, v) = d(u, x) + 1.

u x v. . .

Path P

BFS(s) computes sets Li , the set of nodes at distance i from s, as seen in the diagram below.

s

. . .

7

Algorithm 5: BFS(s)

Set vis[v]← false for all v
Set all Li ← ∅ for i ∈ {1, . . . , n − 1}
L0 ← {s}
vis[s]← true
for i = 0, . . . , n − 1 do

if Li = ∅ then
Exit

while Li ̸= ∅ do
u ← Li .pop()
// In the loop below, replace N with Nout for a directed graph.
foreach x ∈ N(u) do

if vis[x] = false then
vis[x]← true
Li+1.insert(x)
p(x)← u

3.1 Runtime Analysis

We will now look at the runtime for our BFS algorithm (Line 5) for a graph with n nodes and
m edges. All of the initialization above the first for loop runs in O(n) time. Visiting each node
within the while loop takes O(1) time per node visited. Everything inside the inner foreach
loop takes O(1) time per edge scanned, which we can simplify to a runtime of O(m) time
overall for the entire inner for loop.

Overall, we see that our runtime is O(# nodes visited+# edges scanned) = O(m + n).

3.2 Correctness

We will now show that BFS correctly computes the shortest path between the source node
and all other nodes in the graph. Recall that Li is the set of nodes that BFS calculates to be
distance i from the source node.

Proposition 1. For all i , Li = {x | d(s, x) = i}.

Proof. We will prove this by (strong) induction on i .

Base case: i = 0, and L0 = {s}.

Induction hypothesis: Suppose that Lj = {x | d(s, x) = j} for every j ≤ i (induction
hypothesis for i).

Inductive step: We will show two things: (1) if y was added to Li+1, then d(s, y) = i + 1,
and (2) if d(s, y) = i +1, then y is added to Li+1. After proving (1) and (2) we can conclude

8

that Li+1 = {y | d(s, y) = i + 1} and complete the induction.

Let’s prove (1). First, if y is added to Li+1, it was added by traversing an edge (x, y) where
x ∈ Li , so that there is a path from s to y taking the shortest path from s to x followed
by the edge (x, y), and so d(s, y) ≤ d(s, x) + 1. Since x ∈ Li , by the induction hypothesis,
d(s, x) = i , so that d(s, y) ≤ i + 1. However, since y /∈ Lj for any j ≤ i , by the induction
hypothesis, d(s, y) > i , and so d(s, y) = i + 1.

Let’s prove (2). If d(s, y) = i +1, then by the inductive hypothesis y /∈ Lj for j ≤ i . Let x be
the node before y on the s → y shortest path P . As d(s, y) = i + 1 and the portion of P
from s to x is a shortest path and has length exactly i . Thus, by the induction hypothesis,
x ∈ Li . Thus, when x was scanned, edge (x, y) was scanned as well. If y had not been visited
when (x, y) was scanned, then y will be added to Li+1. Hence assume that y was visited
before (x, y) was scanned. However, since y /∈ Lj for any j ≤ i , y must have been visited by
scanning another edge out of a node from Li , and hence again y is added to Li+1.

3.3 BFS versus DFS

If you simplify BFS and DFS to the basics, ignoring all timestamps and levels that we would
usually create, BFS and DFS have a very similar structure. Breadth first search explores
the nodes closest and then moves outwards, so we can use a queue (first in first out data
structure) to put new nodes at the end of the list and pull the oldest/nearest nodes from the
top of the list. Depth first search goes as far down a path as it can before coming back to
explore other options, so we can use a stack (last in first out data structure) which pushes
new nodes on the top and also pulls the newest nodes from the top. See the pseudocode
below for more detail.

Algorithm 6: DFS(s): s is the source node

T ← empty stack
Push s onto T
while T is not empty do
u ← pop from top of T
Push all unvisited neighbors of u on top of stack T

Algorithm 7: BFS(s): s is the source node

T ← empty queue
Push s onto T
while T is not empty do
u ← pop from front of T
Push all unvisited neighbors of u on back of queue T

9

	Graphs
	Representation

	Depth First Search (DFS)
	Runtime of DFS
	DFS Example

	Breadth First Search (BFS)
	Runtime Analysis
	Correctness
	BFS versus DFS

