Midterm Review!

Nikil Selvam

Logistics

* When?
 Wednesday, February 11th. From 6pm to 9pm

* Where?
* 420-040: Last names A-M (Inclusive) Don'orget sbout
* 320-105: Last names N-Z (Inclusive) and past exame

e What’s on the test?

* Lectures 1-7. Lecture 8 and beyond is not tested.
e EthiCS content is fair-game.

Go read Ziyi’s detailed Ed Post about the midterm!

Asymptotics

Big-Oh Notation

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* Formally,

T(n) =0(g(n))

=
dc > 0,ng s.t. Vn = ny,

T(n) <c-gn)

* Also know definitions of Q(---), O(---).

Example

e Show that 2n2 + 10 = 0(n?)

250
— T(n) = 2n® + 10 _an2
. 3g(n) = 3n2
2004 === 3g(n) =3n? !

n=4%

150
c=3 and ny=4 works!

100

Question ﬁ

=

e Show that n3+ n2+n+2026 = 0(n3)

c=4 and ny=2026 works!

Takeaways | Asymptotics

* 0(...): “Upper Bound”
e Q(:-+): “Lower Bound”
* O(--): “Both”

* To formally show T(n) is O(g(n)), you need to explicitly
find constants ¢ and that satisfy the definition.

Question ﬁ

* What do these summations evaluate to?
* n+n+n+..(lognterms)
*n+n/2+n/4+n/8+.. (log nterms)
°* n+n+n+..(nterms)
*n+n/2+n/3+n/4+..(nterms)

Recursion tree 7m=a-7(;)+c-n Amount of

Size of work at this
H each
level

Level | problems problem

0 1 n

n/b

n/b?2

n/bt n/bt n/bt n/bt n/bt n/bf n/bt

Recursion tree

n/bt

n/bt

n/bt

n/bt

n/bt

n
_ _ .nd
rm)=a-T (b) teen _ Amount of
Size of work at this
each level
Level | problems problem
. nd
0 1 n c-n
nd
n/b ac (E)
2 n\¢
n/b a’c (b_Z)
n/bt L ¢
/ n/bt . (F)

: _ n . d
Recursion tree 71 =a-7(;)+cn | Amount of
Size of work at this
each level
Level | problems problem

0 1 n c-n¢

1 a2 nb_ a(p)
)d

¥

We can also take n/b to

The master theorem mean either [o [, and

the theorem is still true.

e Suppose thata = 1,b > 1,and d are constants
(independent of n).

e SupposeT(n) =a-T (%) + 0(n%). Then

rO(nd log(n)) if a = b
T(n) = < 0(n%) if a < b
kO(‘nl"t‘%b(“ﬁ)) if a > b“

Three parameters:
a : number of subproblems

b : factor by which input size shrinks
d : need to do n® work to create all the
subproblems and combine their solutions.

Question ﬁ

* For the purposes of this class, when does Master
Theorem not apply?

e Subproblems don’t have equal size

e Work done “to combine” is not of the form n¢

The Substitution Method

* Step 1: Guess what the answer is.
e Step 2: Prove by induction that your guess is correct.
 Step 3: Pretend you never did step 1!

* It’s great if you have a precise
guess in Step 1 like 32nlogn!

e Butit’s alright even if you just

know its cnlogn for some c. You

can figure c as you go in Step 2!

{!

Example

'T(n)ST()+T()+nforn>10

e Basecase:T(n) =1when1<n<10

Step 1: guess the answer

n m
T(n) < T(g) +T(E) + n forn > 10.

Basecase:T(n) = 1whenl1<n <10

* Let’s guess O(n) and try to
prove it.

Step 2: prove our guess is right

We don’t know

n n
T(n)<T (—) +T (—) + nforn > 10. what C should be
= 10 yet! Let’s go
SEESCEEER M) = L L S = I through the proof
* Inductive Hypothesis: T(n) < Cn leaving it as “C”

and then figure
*Basecase: 1 =T(n) <Cnforalll <n <10 out what works..

* Inductive step:
e Let k> 10. Assume that the IH holds for

. T(k)Sk+T(§)+T(1‘)

10 Whatever we

Sk+C°(E)+C-(1€) choose Cto be, it
> 10 should have C=1

nsothat1l < n < k.

* (aka, v_vant to show that IH holds for n=k).

* Conclusion:
* Thereissome Csothatforalln >1,T(n) < Cn
* By the definition of big-Oh, T(n) = O(n).

Step 3: Pretend you never did Step 1

. T(n)Sn+T(2)+T n forn > 10.
-rheorem' T(n) — 0 (n) Base case: T(n)5= 1 V\/(hle%)l <n<10

Proof:

* Inductive Hypothesis: T(n) < 10n.
*Basecase: 1 =T(n) < 10nforalll <n <10

* Inductive step:
e Let k> 10. Assume that the IH holds forallnsothat1 < n < k.

. T(k)Sk+T(§)+T(7—")

k 107 ok
<k+10-(5)+10- (T))
=k+2k+7k=10k
* Thus, IH holds for n=k.
e Conclusion:
e Foralln>1,T(n) < 10n
* Then, T(n) = O(n), using the definition of big-Oh withny, = 1,¢c = 10.

Takeaways | Recurrences

e Suppose T(n) =a-T (%) + 0(n4) for your algorithm.
Then

e Optionl : Find the total work done by the algorithm by
(optionally drawing out the recursion tree, and) summing up
the work done by your algorithm at each level.

e Option 2: Directly use Master Theorem.

e If your algorithm obeys a different recurrence

e Option 1: You can still explicitly write a summation for total
work done and evaluate it.

e Option 2: Guess and prove by induction.

Select Algorithm

Pseudocode

« Select(Ak):
* If len(A) <=50: Base Case: If len(A) = O(1),
e A= MergeSort(A) then any sortipg glgorithm
. Return A[k—l] runs in time O(1).
* p=choosePivot(A)
* L, pivotVal,R=Partition(A,p)

e if len(L) == k-1: Case 1: We got lucky and found
e return pivotVaI exactly the k’th smallest value!
e Elseiflen(L) > k-1: Case 2: The k’th smallest value
e return Select(L, k) is in the first part of the list
* Elseiflen(L) < k-1: Case 3: The k’th smallest value

e return Select(R, k—Ilen(L)—-1) is in the second part of the list

Pseudocode

e choosePivot(A):

* SplitAintom =[ﬂ groups, of size
<=5 each.
* Fori=1, .., m:

* Find the median within the i’th

Select(A k) group, call it p;

* Select(Ak): _
° |f |en(A) <= 50: p - SELECT([pl, le p3) seey pm])] m/z)

. A=MergeSort(A) * return theindexof pin A
e Return A[k-1] /
* p=choosePivot(A)
* L, pivotVal, R=Partition(A,p)
e jflen(L) == k-1:
e return pivotVal
e Elseif len(L) > k-1:
* return Select(L, k)
* Elseiflen(L) < k-1:
* return Select(R, k—len(L) - 1)

Running time

* Turns out the choice of pivot guarantees that
*|L|<Z +5and [R| ST +5

* So, you are guaranteed to recurse into a subproblem
that is at most ~70% of the original size!

 Recurrence relation:
Tn) <T (g) + T (Z—’;) + 0(n)

The call to choosePivot makes \

one further recursive _Ca” to Outside of choosePivot, there’s at most one
SELECT on an array of size n/5. recursive call to SELECT on array of size 7n/10

Takeaways | Select Algorithm

e SELECT(A,k) can be solved in linear time!
* Pick a pivot
* Rearrange elements around the pivot
* Recurse left or right of pivot based on the value of k

* Choice of pivot matters!
* Bad pivot can make this algorithm O(n?)

* Picking median as pivot is great, but we don’t know how to
do this.
* Turns out we can get find a pivot using median-of-medians that is

guaranteed to be “close” to the true median, and this is good
enough to get a linear time solution!

5 min Break!

QuickSort

QuickSort

e QuickSort(A):
* If len(A) <=1:
* return
* Pick some x = A[i] at random. Call this the pivot.
* PARTITION the rest of A into:
e L (less than x) and
* R (greater than x)
* Replace A with [L, x, R] (that s, rearrange A in this order)
e QuickSort(L)
e QuickSort(R)

Example of recursive calls
E Pick 5 as a pivot

l 4| 5 Partition on either side of 5

5

W

=
N

=

Recurse on [76] and

Recurse on [3142] 3
pick 6 as a pivot.

and pick 3 as a pivot.

=
~
o

Partition Partition on

around 3. 3 E 5 6 either side of 6
Recurse on Recurse on [7], it has
[1_2] and 3 4 Fzﬁc(jzf,;? 6 7 size 1 so we’re done.
pick 2 as a

pivot.

partition 2 3 4 5 6 7

around 2.

mes (1112113114 5 6 7

How long does this take to run?

* We will count the number of comparisons that the
algorithm does.

* How Mmany times are any two items compared?
E In the example before,
everything was compared
to 5 once in the first
5 step....and never again.

n 5 But not everything was
compared to 3.

5 was, and so were 1,2 and 4.

3 E 5 6 But not 6 or 7.

Each pair of items is compared
either O or 1 times. Which is it?

Let’s assume that the numbers
H in the array are actually the

numbers 1,...,n

* Whether or not a, b are compared is a random variable, that depends on
the choice of pivots. Let’s say
Y o = { 1 if a and b are ever compared
@b =1 0 if a and b are never compared

* Inthe previous example X; 5 = 1, because item 1 and item 5 were compared.
* But X;,=0, because item 3 and item 6 were NOT compared.

Counting comparisons

 The number of comparisons total during the algorithm is

n-1 n
2, 2, Yoo

a=1b=a+1

* The expected number of comparisons is

f i Xap| = z i El Xapl

a=1b=a+1 a=1b=a+1

E

by using linearity of expectations.

expected number of comparisons:
n-1 n

Counting comparisons > > Eix,

a=1b=a+1

* So we just need to figure out E[X, , |

° E[Xa,b] — P(Xa,b =1)-1 +P(Xa,b =0)-0= P(Xa,b =1)
(by the definition of expectation)

* So we need to figure out:

P(X,, = 1) = the probability that a and b are ever compared.
v v
Say that a =2 and b = 6. What is the probability
E that 2 and 6 are ever compared?
This is exactly the probability that either 2 or 6 is first
6 3 5 2 4 picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be
3 1 2 4 5 7 separated and never see each other again.

Counting comparisons

P(Xgp=1)
= probability a,b are ever compared
= probability that one of a,b are picked first out of
all of the b —a +1 numbers between them.

2 choices out of b-a+1...

v v

_ 2
- b—-—a+1

Expected number of comparisons

*E [ZZ;% Z:a+1 Xa,b] Igiig)sat?sis)s(ﬁ:z:;;:’zt’zf\; (:;gorithm
°« — Z;} g:a+1 E[Xa,b] linearity of expectation

o — Z;} Z:a+1 P(Xa,b — 1) definition of expectation

o — n—-1yn _ the reasoning we just did

a=14&b=a+1 b—a+1

* We get that this is less than 2n In(n.)

Question ﬂ

p By

* Why not just pick the median as the pivot?
* We know how to find median in linear time.
* Are we then not guaranteed that QuickSort is nlogn?

* You could, but it’s no longer a randomized algorithm!

* Also, finding the median is slow in practice due to big
constant factors.

Takeaways | QuickSort

 Randomized algorithm to sort fast!
* Expected runtime is O(nlogn)
e Worst case runtime is O(n?)

More Sorting

Comparison-based sorting algorithms

* You want to sort an array of items.

* You can’t access the items’ values directly: you can
only compare two items and find out which is
bigger or smaller.

They look like decision trees!

m T

<

Sort these three things.

What’s the worst-case runtime?
- At least Q(length of the longest path)!

41

How long is the longest path?

We want a statement: in all such trees,
the longest path is at least

e Thisis a binary tree with at

NO
least N! leaves.

YE e The shallowest tree with n!

leaves is the completely
balanced one, which has

_ depth log(n!) |
o ;;ﬁ u

* Soin all such trees, the
longest path is at least log(n!).

Conclusion: the longest path
has length at least Q(n log(n)).

42

Question ﬁ

* Show that log(n!) = ®(nlogn)

log(n!)=log(nxn-1xn-2..1)
<=log(nxnxn..n)
= log(n")
=nlogn

Can do something similar for the lower bound!

Another model of computation

* The items you are sorting have meaningful values.

oefslsfz]1f2

instead of

44

Why might this help?

couningsort: {9 [e[3fsfafa]a]

5 Bl sl

Concatenate SO RTE D l

the buckets! In time O(n).
45

RadixSort

* For sorting integers up to size M
* Can use less space than CountingSort

* Algorithm: CountingSort on the least-significant
digit first, then the next least-significant, and so on.

Why does this work?

Original array:

Next array is sorted by the first digit.

5o | a1 |01 1 [18 [2e[3

Next array is sorted by the first two digits.
101 @ O1 13 21 234 345 50

Next array is sorted by all three digits.

Sorted array

47

General running time of RadixSort

* Say we want to sort:
* nintegers,
* maximum size M,
* in baser.

e Number of iterations of RadixSort:

* Same as number of digits, base r, of an integer x of max size M.
e Thatisd = |log,,(M)] + 1

* Time per iteration:
* |nitialize r buckets, put n items into them
* O(n + r) total time.

* Total time:
. O(d -(n+ r)) = 0((llog,.(M)|+1)-(n+ r))

48

Takeaways | More Sorting

* For comparison-based sorting algorithms, no
algorithm can do better than nlogn.

* If we are sorting small integers, we could do better
using Counting Sort or Radix Sort!

* The runtime of Radix Sort is 0((llog,.(M)|+1)-(n+ r))

Binary Search Trees
and Red Black Trees

Why do we care about these trees?

(Balanced)
Sorted Arrays | Linked Lists | oY SR
Trees

O(Iog(n) O(n) w“ O(log(n)) L)

oim) O Oflogn) <
m om 2 o™ ofogm/®

Binary tree terminology

This is a node.
It has a key (7).

Each node has two children. This node is
The left child ofis theroot ™ .
The right child of ism

The parent of is
is a descendant of

Each node has a pointer to its
left child, right child, and parent.

Both children of are NIL.

(I won’t usually draw them).

These nodes
are leaves.

The height of this tree is 3.

(Max length of path from the root
to a leaf).

Binary Search Trees
 ABST is a binary tree so that:

* Every LEFT descendant of a node has key less than that node.
* Every RIGHT descendant of a node has key larger than that node.

* Example BST:

Question ﬂ

e |s this a BST?

Question ﬂ

e |s this a BST?

Runtime

e SEARCH: O(height)
* INSERT: O(height)
 DELETE: O(height)

* But height can be n if we do not make sure the tree
is balanced!
* We want to make sure height is always roughly

log(n)

Red-Black Trees

obey the following rules (which are a proxy for balance)

* Every node is colored red or black.
* The root node is a black node.
* NIL children count as black nodes.

* Children of a red node are black nodes. 5

* For all nodes x:

e all paths from x to NIUs have the same [l83
number of black nodes on them.

3

2406

NIL J NIL | NIL § NIL § NIL § NIL § NIL

NIL

Questlon

o6
& &

Takeaways | BSTs and RB Trees

e BST: Left descendants lower, Right descendants higher
e Support operations in O(height)

* RB Tree: One particular kind of BST that is guaranteed
to be balanced

* Ensuring that all operations are O(logn)

* Must know their definitions/properties. Do not need
to know how insertion/deletion etc works!

Good Luck!

You’re gonna do great!

