
Midterm Review!
Nikil Selvam

Logistics
• When?
• Wednesday, February 11th. From 6pm to 9pm

• Where?
• 420-040: Last names A-M (Inclusive)
• 320-105: Last names N-Z (Inclusive)

• What’s on the test?
• Lectures 1-7. Lecture 8 and beyond is not tested.
• EthiCS content is fair-game.

Go read Ziyi’s detailed Ed Post about the midterm!

Don’t forget about
the related sections

and past exams!

Asymptotics

Big-Oh Notation
• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.

• Think of 𝑇(𝑛) as a runtime: positive and increasing in n.

• Formally,
𝑇 𝑛 = 𝑂 𝑔 𝑛 	

⟺
∃𝑐 > 0, 𝑛!	 𝑠. 𝑡. 	 ∀𝑛 ≥ 𝑛!,	

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

• Also know definitions of Ω ⋯ ,Θ ⋯ .

Example
• Show that 2𝑛2 + 10 = 𝑂(𝑛2)

c=3 and n0=4 works!

Question

• Show that 𝑛3+ 𝑛2+𝑛+2026 = 𝑂(𝑛3)

c=4 and n0=2026 works!

Takeaways | Asymptotics
• 𝑂(…): “Upper Bound”
• Ω(⋯): “Lower Bound”
• Θ(⋯): “Both”

• To formally show T(n) is 𝑂(g(n)), you need to explicitly
find constants 𝑐 and 𝑛!	 that satisfy the definition.

Recurrences

Question
• What do these summations evaluate to?
• n + n + n+ … (log n terms)
• n + n/2 + n/4 + n/8 + … (log n terms)
• n + n + n+ … (n terms)
• n + n/2 + n/3 + n/4 + … (n terms)

Recursion tree

Size n

n/bn/b

(Size 1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount of
work at this

level

0

problems

1

2

t

logb(n)

1

a

a2

at

𝑎"#$! %

Size of
each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛
𝑏 + 𝑐 ⋅ 𝑛!

Recursion tree

Size n

n/bn/b

(Size 1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount of
work at this

level

0

problems

1

2

t

logb(n)

1

a

a2

at

𝑎"#$! %

Size of
each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛
𝑏 + 𝑐 ⋅ 𝑛!

𝑐 ⋅ 𝑛𝑑

𝑎!𝑐
𝑛
𝑏!

"

𝑎𝑐
𝑛
𝑏

"

𝑎#𝑐
𝑛
𝑏#

"

𝑎$%&! ' 𝑐

Recursion tree

Size n

n/bn/b

(Size 1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount of
work at this

level

0

problems

1

2

t

logb(n)

1

a

a2

at

𝑎"#$! %

Size of
each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛
𝑏 + 𝑐 ⋅ 𝑛!

𝑐 ⋅ 𝑛𝑑

𝑎!𝑐
𝑛
𝑏!

"

𝑎𝑐
𝑛
𝑏

"

𝑎#𝑐
𝑛
𝑏#

"

𝑎$%&! ' 𝑐

Total work is at most:

𝑐 ⋅ 𝑛! ⋅ $
"#$

%&'"()) 𝑎
𝑏!

"

The master theorem
• Suppose that 𝑎 ≥ 1, 𝑏 > 1, and	𝑑 are constants

(independent of n).

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 %
*
+𝑂 𝑛+ . Then

Three parameters:
a : number of subproblems
b : factor by which input size shrinks
d : need to do nd work to create all the
subproblems and combine their solutions.

We can also take n/b to
mean either "

#
 or "

#
 and

the theorem is still true.

𝑇 𝑛 =
O 𝑛! log 𝑛 	 if	𝑎 = 𝑏!

O 𝑛! 	 if	𝑎 < 𝑏!

O 𝑛%&'" + 	 if	𝑎 > 𝑏!

Question

• For the purposes of this class, when does Master
Theorem not apply?

• Subproblems don’t have equal size
• Work done “to combine” is not of the form 𝑛!

The Substitution Method

• Step 1: Guess what the answer is.
• Step 2: Prove by induction that your guess is correct.
• Step 3: Pretend you never did step 1!

• It’s great if you have a precise
guess in Step 1 like 32nlogn!

• But it’s alright even if you just
know its cnlogn for some c. You
can figure c as you go in Step 2!

Example

• 𝑇 𝑛 ≤ 𝑇 %
,
+ 𝑇 -%

.!
+ 𝑛 for 𝑛 > 10.

• Base case: 𝑇 𝑛 = 1	when	1 ≤ 𝑛 ≤ 10

Step 1: guess the answer

• Let’s guess 𝑂(𝑛) and try to
prove it.

𝑇 𝑛 ≤ 𝑇
𝑛
5 + 𝑇

7𝑛
10 + 𝑛	for 𝑛 > 10.

Base case: 𝑇 𝑛 = 	1	when	1 ≤ 𝑛 ≤ 10

Step 2: prove our guess is right

• Inductive Hypothesis: 𝑇 𝑛 ≤ 𝑪𝑛
• Base case: 1 = 𝑇 𝑛 ≤ 𝑪𝑛 for all 1 ≤ n ≤ 10	
• Inductive step:

• Let k > 10. Assume that the IH holds for all n so that 1 ≤ 𝑛 < 𝑘.
• 𝑇 𝑘 ≤ 𝑘 + 𝑇 !

"
+ 𝑇 #!

$%

 ≤ 𝑘 + 𝑪 ⋅ !
"
+ 𝑪 ⋅ #!

$%

 = 𝑘 + 𝑪
"
𝑘 + #𝑪

$%
𝑘

 ≤ 𝑪𝑘 ??
• (aka, want to show that IH holds for n=k).

• Conclusion:
• There is some 𝑪 so that for all 𝑛 ≥ 1, 𝑇 𝑛 ≤ 𝑪𝑛
• By the definition of big-Oh, T(n) = O(n).

We don’t know
what C should be

yet! Let’s go
through the proof
leaving it as “C”
and then figure

out what works…

Whatever we
choose C to be, it
should have C≥1

Let’s solve for C and make this true!
C = 10 works.

𝑇 𝑛 ≤ 𝑇
𝑛
5 + 𝑇

7𝑛
10 + 𝑛	for 𝑛 > 10.

Base case: 𝑇 𝑛 = 	1	when	1 ≤ 𝑛 ≤ 10

Step 3: Pretend you never did Step 1

• Inductive Hypothesis: 𝑇 𝑛 ≤ 𝟏𝟎𝑛.
• Base case: 1 = 𝑇(𝑛) ≤ 𝟏𝟎𝑛 for all 1 ≤ n ≤ 10	
• Inductive step:

• Let k > 10. Assume that the IH holds for all n so that 1 ≤ 𝑛 < 𝑘.
• 𝑇 𝑘 ≤ 𝑘 + 𝑇 !

"
+ 𝑇 #!

$%

 ≤ 𝑘 + 𝟏𝟎 ⋅ !
"
+ 𝟏𝟎 ⋅ #!

$%

 = 𝑘 + 2𝑘 + 7𝑘 = 𝟏𝟎𝑘
• Thus, IH holds for n=k.

• Conclusion:
• For all 𝑛 ≥ 1, 𝑇 𝑛 ≤ 𝟏𝟎𝑛
• Then, T(n) = O(n), using the definition of big-Oh with 𝑛% = 1, 𝑐 = 10.

Theorem: 𝑇 𝑛 = 𝑂 𝑛
Proof:

𝑇 𝑛 ≤ 𝑛 + 𝑇
𝑛
5 + 𝑇

7𝑛
10 for 𝑛 > 10.

Base case: 𝑇 𝑛 = 	1	when	1 ≤ 𝑛 ≤ 10

Takeaways | Recurrences

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 %
*
+𝑂 𝑛+ for your algorithm.

Then
• Option1 : Find the total work done by the algorithm by

(optionally drawing out the recursion tree, and) summing up
the work done by your algorithm at each level.
• Option 2: Directly use Master Theorem.

• If your algorithm obeys a different recurrence
• Option 1: You can still explicitly write a summation for total

work done and evaluate it.
• Option 2: Guess and prove by induction.

Select Algorithm

Pseudocode
• Select(A,k):
• If len(A) <= 50:
• A = MergeSort(A)
• Return A[k-1]

• p = choosePivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:
• return pivotVal

• Else if len(L) > k-1:
• return Select(L, k)

• Else if len(L) < k-1:
• return Select(R, k – len(L) – 1)

Base Case: If len(A) = O(1),
then any sorting algorithm

runs in time O(1).

Case 1: We got lucky and found
exactly the k’th smallest value!

Case 2: The k’th smallest value
is in the first part of the list

Case 3: The k’th smallest value
is in the second part of the list

Pseudocode

• Select(A,k):
• If len(A) <= 50:

• A = MergeSort(A)
• Return A[k-1]

• p = choosePivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:

• return pivotVal
• Else if len(L) > k-1:

• return Select(L, k)
• Else if len(L) < k-1:

• return Select(R, k – len(L) – 1)

• choosePivot(A):
• Split A into m = '

(
 groups, of size

<=5 each.
• For i=1, .., m:

• Find the median within the i’th
group, call it pi

• p = SELECT([p1, p2, p3, …, pm] , m/2)
• return the index of p in A

Running time

• Turns out the choice of pivot guarantees that
• 𝐿 ≤ "#

$%
+ 5	and 𝑅 ≤ "#

$%
+ 5

• So, you are guaranteed to recurse into a subproblem
that is at most ~70% of the original size!

• Recurrence relation:

𝑇 𝑛 ≤ 𝑇 %
,
+ 𝑇 -%

.!
+𝑂 𝑛

Outside of choosePivot, there’s at most one
recursive call to SELECT on array of size 7n/10

The call to choosePivot makes
one further recursive call to

SELECT on an array of size n/5.

Takeaways | Select Algorithm
• SELECT(A,k) can be solved in linear time!
• Pick a pivot
• Rearrange elements around the pivot
• Recurse left or right of pivot based on the value of k

• Choice of pivot matters!
• Bad pivot can make this algorithm 𝑂(𝑛2)
• Picking median as pivot is great, but we don’t know how to

do this.
• Turns out we can get find a pivot using median-of-medians that is

guaranteed to be “close” to the true median, and this is good
enough to get a linear time solution!

5 min Break!

QuickSort

QuickSort

• QuickSort(A):
• If len(A) <= 1:
• return

• Pick some x = A[i] at random. Call this the pivot.
• PARTITION the rest of A into:
• L (less than x) and
• R (greater than x)

• Replace A with [L, x, R] (that is, rearrange A in this order)
• QuickSort(L)
• QuickSort(R)

Example of recursive calls

7 6 3 5 1 2 4

7 63 51 2 4

3 1 2 4 7 6

31 42

5

5 76

1 2 3 4 5 76

Pick 5 as a pivot

Partition on either side of 5

Recurse on [76] and
pick 6 as a pivot.

Partition on
either side of 6

Recurse on [3142]
and pick 3 as a pivot.

Recurse on [7], it has
size 1 so we’re done.

Partition
around 3.

Recurse on
[4] (done).

Recurse on
[12] and
pick 2 as a
pivot.

partition
around 2.

1 2
Recurse on
[1] (done). 1

3 4 5 76

2 3 4 5 76

How long does this take to run?
• We will count the number of comparisons that the

algorithm does.
• How many times are any two items compared?

7 6 3 5 1 2 4

7 63 51 4 2

In the example before,
everything was compared
to 5 once in the first
step….and never again.

3 1 2 4 7 6

31 42

5

5 76

But not everything was
compared to 3.
5 was, and so were 1,2 and 4.
But not 6 or 7.

Each pair of items is compared
either 0 or 1 times. Which is it?

7 6 3 5 1 2 4 Let’s assume that the numbers
in the array are actually the

numbers 1,…,n

• Whether or not a, b are compared is a random variable, that depends on
the choice of pivots. Let’s say

𝑿𝒂,𝒃 = 3 𝟏	 if	𝒂	and	𝒃	are	ever	compared
	 𝟎	 if	𝒂	and	𝒃	are	never	compared	

• In the previous example X1,5 = 1, because item 1 and item 5 were compared.
• But X3,6 = 0, because item 3 and item 6 were NOT compared.

Counting comparisons

• The number of comparisons total during the algorithm is

4
&'$

#($

4
)'&*$

#

𝑋&,)

• The expected number of comparisons is

𝐸 4
&'$

#($

4
)'&*$

#

𝑋&,) =	4
&'$

#($

4
)'&*$

#

𝐸[𝑋&,)]	

 by using linearity of expectations.

Counting comparisons
• So we just need to figure out E[Xa,b]
• 𝐸 𝑋&,) = 𝑃(𝑋&,) = 1) ⋅ 1 + 𝑃(𝑋&,) = 0) ⋅ 0 = 𝑃(𝑋&,) = 1)

(by the definition of expectation)

• So we need to figure out:
P(Xa,b = 1) = the probability that a and b are ever compared.

7 6 3 5 1 42 Say that a = 2 and b = 6. What is the probability
that 2 and 6 are ever compared?

7 6 3 5 1 42 This is exactly the probability that either 2 or 6 is first
picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be
separated and never see each other again.7 63 51 2 4

expected	number	of	comparisons:

F
$%&

"'&

F
#%$(&

"

𝐸[𝑋$,#]	

Counting comparisons

𝑃 	𝑋0,* = 1	
 = probability a,b are ever compared
 = probability that one of a,b are picked first out of
 all of the b – a +1 numbers between them.

 = 2
*	405.

7 6 3 5 1 42

2 choices out of b-a+1…

Expected number of comparisons

• 𝐸 ∑06.%4.∑*605.% 𝑋0,*
• =	∑06.%4.∑*605.% 𝐸[𝑋0,*]	
• =	∑06.%4.∑*605.% 𝑃(𝑋0,* = 1)	

• =	∑06.%4.∑*605.% 2
*	405.

• We get that this is less than 2n ln(n.)

linearity of expectation

definition of expectation

the reasoning we just did

This is the expected number of
comparisons throughout the algorithm

Question
• Why not just pick the median as the pivot?
• We know how to find median in linear time.
• Are we then not guaranteed that QuickSort is nlogn?

• You could, but it’s no longer a randomized algorithm!
• Also, finding the median is slow in practice due to big

constant factors.

Takeaways | QuickSort
• Randomized algorithm to sort fast!
• Expected runtime is O(nlogn)
• Worst case runtime is O(n2)

More Sorting

Comparison-based sorting algorithms

• You want to sort an array of items.
• You can’t access the items’ values directly: you can

only compare two items and find out which is
bigger or smaller.

39

They look like decision trees!

Sort these three things. ?≤
YES NO

≤
YES

?
NO

≤ ?
YES NO

etc…

40

What’s the worst-case runtime?

YES NO
?

??
YES NOYES NO

????

- At least Ω(length of the longest path)!

41

How long is the longest path?

YES NO
?

??
YES NOYES NO

????

• This is a binary tree with at
least _____ leaves.

• The shallowest tree with n!
leaves is the completely
balanced one, which has
depth ______.

• So in all such trees, the
longest path is at least log(n!).

n!

log(n!)

Conclusion: the longest path
has length at least Ω(n log(n)).

We want a statement: in all such trees,
the longest path is at least _____

42

Question

• Show that log(𝑛!) = Θ(𝑛log𝑛)

log(𝑛!) = log(𝑛 x 𝑛-1 x 𝑛-2 … 1)
 <= log(𝑛 x 𝑛 x 𝑛 … n)
 = log(𝑛n)
 = 𝑛log𝑛

Can do something similar for the lower bound!

Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of

44

Why might this help?

CountingSort: 9 6 3 5 2 1 2

1 2 3 4 5 6 7 8 9

963 521

2

SORTED!
In time O(n).

Concatenate
the buckets!

45

RadixSort

• For sorting integers up to size M
• Can use less space than CountingSort

• Algorithm: CountingSort on the least-significant
digit first, then the next least-significant, and so on.

46

Why does this work?

21 345 13 101 50 234 1

50 21 101 1 13 234 345

1 13 21 50 101 234 345

101 1 13 21 234 345 50

Original array:

Next array is sorted by the first digit.

Next array is sorted by the first two digits.

Next array is sorted by all three digits.

Sorted array

50 21 101 1 13 234 345

101 01 13 21 234 345 50

001 013 021 050 101 234 345

47

General running time of RadixSort
• Say we want to sort:
• n integers,
• maximum size M,
• in base r.

• Number of iterations of RadixSort:
• Same as number of digits, base r, of an integer x of max size M.
• That is d = log, 𝑀 + 1

• Time per iteration:
• Initialize r buckets, put n items into them
• 𝑂(𝑛 + 𝑟) total time.

• Total time:
• 𝑂 𝑑 ⋅ 𝑛 + 𝑟 = 	𝑂 log, 𝑀 + 1 ⋅ 𝑛 + 𝑟

48

Takeaways | More Sorting
• For comparison-based sorting algorithms, no

algorithm can do better than nlogn.
• If we are sorting small integers, we could do better

using Counting Sort or Radix Sort!
• The runtime of Radix Sort is 𝑂 log, 𝑀 + 1 ⋅ 𝑛 + 𝑟

Binary Search Trees
and Red Black Trees

Why do we care about these trees?

Sorted Arrays Linked Lists Binary Search
Trees

Search O(log(n)) O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

(Balanced)

Binary tree terminology

42 8

7

1

3

5
This node is
the root

This is a node.
It has a key (7).

These nodes
are leaves.

The left child of is3 2

The right child of is3 4

Both children of are NIL.
(I won’t usually draw them).

1

Each node has two children.

NILNIL

Each node has a pointer to its
left child, right child, and parent.

The parent of is3 5

is a descendant of 2 5

The height of this tree is 3.
(Max length of path from the root
to a leaf).

Binary Search Trees

42
8

7

1

3

5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example BST:

Question
• Is this a BST?

42
8

7

1

3

5

Question
• Is this a BST?

4

2

8

7

3

5

6

Runtime
• SEARCH: O(height)
• INSERT: O(height)
• DELETE: O(height)

• But height can be n if we do not make sure the tree
is balanced!
• We want to make sure height is always roughly

log(n)

Red-Black Trees
obey the following rules (which are a proxy for balance)

• Every node is colored red or black.
• The root node is a black node.
• NIL children count as black nodes.
• Children of a red node are black nodes.
• For all nodes x:
• all paths from x to NIL’s have the same

number of black nodes on them.

42 8

73

5

6
NIL NIL NIL NIL NIL NIL NIL NIL

Question

Yes!

No!

No! No!

Takeaways | BSTs and RB Trees
• BST: Left descendants lower, Right descendants higher
• Support operations in O(height)

• RB Tree: One particular kind of BST that is guaranteed
to be balanced
• Ensuring that all operations are O(logn)

• Must know their definitions/properties. Do not need
to know how insertion/deletion etc works!

Good Luck!
You’re
gonna do
great!
(trust)

You’re gonna do great!

