
CS 161 (Stanford, Winter 2026) Prereq Quiz

Exercises. The following questions cover material that we will use going forward in CS
161. Your work will not be graded and you are not required to complete all problems in
detail, but you should make sure you are comfortable with all concepts used here. You are
encouraged to ask for help on Ed or in office hours.
Note: many of these problems can be solved using more than one method. If your
solution looks different than the official answer, it does not mean that you are wrong. If
you aren’t sure of your answer, feel free to post on Ed or ask during office hours.

1 Induction

1.1 Sums of squares

Show that for all n ≥ 1,

12 + 22 + . . .+ n2 =
n(n + 1)(2n + 1)

6
.

Solution

Base case: If n = 1, then 12 = 1·(1+1)(2+1)
6

= 1, so the claim holds.
Induction step: Assume that the claim holds for n = k−1, so 12+22+ . . .+(k−1)2 =
(k−1)k(2k−1)

6
= 2k3−3k2+k

6
. Then

12 + 22 + . . .+ k2 =
2k3 − 3k2 + k

6
+ k2 Induction hypothesis

=
2k3 + 3k2 + k

6
Common denominator

=
k(k + 1)(2k + 1)

6
. Factor

Therefore the claim holds for n = k as well, which proves the claim for all n by induction.

1.2 Fibonacci parity

The Fibonacci numbers are defined by F (0) = 0, F (1) = 1, and F (n) = F (n−1)+F (n−2)
for n ≥ 2. Show that every third Fibonacci number is even.

Solution

We’ll work in groups of three numbers (a form of strong induction), since the claim we
need to show refers to a pattern of length three.
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Base case: The first three Fibonacci numbers are F (0) = 0, F (1) = 1, F (2) = 0+1 =
1, which have parity even, odd, odd, so the claim holds for n = 0, 1, 2.
Induction step: Assume that the Fibonacci numbers F (3k − 3), F (3k − 2), F (3k − 1)
have parity even, odd, odd. Then F (3k) = F (3k − 2) + F (3k − 1) = odd + odd is
even. Similarly, F (3k+1) = F (3k−1)+F (3k) = odd+ even is odd, and F (3k+2) =
F (3k)+F (3k +1) = even+ odd is odd. Therefore F (3k), F (3k +1), F (3k +2) also
have parity even, odd, odd, so the claim holds for all n by induction.

1.3 Sums of cubes

Show that for all n ≥ 1, 13 + 23 + . . .+ n3 is a perfect square.

Solution

We will prove a stronger claim that is more amenable to induction. We’ll show that
not only is

∑n
i=1 i

3 a perfect square, but it is equal to (n(n + 1)/2)2.
Bonus fact: n(n + 1)/2 =

∑n
i=1 i , so in fact we’re proving that

∑n
i=1 i

3 = (
∑n
i=1 i)

2.
You can prove this bonus fact via induction or directly.
Base case: If n = 1, then 13 = (1 · 2/2)2 = 1, so the claim holds.
Induction step: Assume that the claim holds for n = k−1, so

∑k−1
i=1 i

3 = ((k−1)k/2)2.
Then

k∑
i=1

i3 = ((k − 1)k/2)2 + k3 Induction hypothesis

=
k4 − 2k3 + k2

4
+ k3

=
k4 + 2k3 + k2

4

=

(
k(k + 1)

2

)2
.

Therefore the claim holds for n = k as well, so we’ve proved the claim for all n by
induction.

1.4 Dividing chocolate

Consider a chocolate bar made up of squares in an n × m grid pattern. Show that it takes
nm − 1 breaks to break the bar completely into 1× 1 squares.

Solution

Base case: A 1×1 chocolate bar takes 1 ·1−1 = 0 breaks to divide into 1×1 squares,
so the claim holds.
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Induction step: Assume the claim holds for all chocolate bars of size m′ × n′, where
m′ < m or n′ < n (strong induction). We will prove that it also holds for a chocolate
bar of size m × n. Break the bar in any spot; assume without loss of generality that
we break it along the first dimension, so we end up with two pieces of size m1× n and
m2 × n, where m1 +m2 = m. We can apply our induction hypothesis to both of these
pieces, so they both require m1n− 1 and m2n− 1 breaks to fully divide. Therefore the
total number of breaks required, including our one initial break, is

(m1n − 1) + (m2n − 1) + 1 = (m1 +m2)n − 1 = mn − 1,

so the claim holds for a bar of size m × n. By strong induction, the claim holds for a
bar of any size.

1.5 Friendship parity

Consider a group of n people where some pairs of people are friends with each other. (For
example, in a group of Alice, Bob, and Carol, perhaps Alice and Bob are friends, and Alice
and Carol are friends, but Bob and Carol are not friends.) Show that there is an even number
of people who have an odd number of friends.

Solution

Base case: in a group of one person, there are no friendships, so zero people have an
odd number of friends and the claim holds.
Induction step: Assume that any group of n = k − 1 people has an even number of
people with an odd number of friends. Consider a group of size n = k . Pick one
arbitrary person, say Person A, and first consider the group without Person A, say
Group B. By the induction hypothesis, Group B has an even number of people with
an odd number of friends. Now consider Person A’s friends. Each of these friends has
their friend count parity flipped by the addition of Person A to the group. If Person A
has an even number of friends, then an even number of people change friendship parity,
so the total number of people with an odd number of friends remains even. If Person A
has an odd number of friends, then by similar reasoning, an odd number of people from
Group B now have an odd number of friends. Including Person A, this results overall
in an even number of people with an odd number of friends. Therefore the claim holds
for groups of size n = k , so by induction it holds for all n.

1.6 Coin values

Suppose a country only has coins of value 3 and 5. Show that it’s possible to pay for any
value that is at least 8.
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Solution

In this problem, it’s unclear how paying a value of k helps us at all to pay a value of
k + 1, which suggests that we should consider if strong induction might help.
Base case: We can create a value of 8 using one 3 coin and one 5 coin. We can create
9 as 3 coins of value 3, and we can create 10 as 2 coins of value 5.
Induction step: Assume we can create n = k − 3 value out of coins. Then we can also
create the value n = k by adding one coin of value 3. Since any number greater than
8 can be obtained by adding multiples of 3 to either 8, 9, or 10, we have proved the
result via strong induction.
Bonus challenge: Show that if the coins come in values a and b, where the greatest
common divisor of a and b is 1, then it’s possible to create any value that is at least
(a − 1)(b − 1).

1.7 Coin flip parity

Show that if a fair coin is flipped n times, the number of heads is equally likely to be even or
odd.

Solution

Base case: If n = 1, then since the coin is fair, we are equally likely to get one heads
or zero heads (aka one tails).
Induction step: Assume the claim holds for n = k − 1. Then

P (even heads after k) = P (even heads after k − 1)P (kth flip is tails)

+ P (odd heads after k − 1)P (kth flip is heads)

=
1

2
·
1

2
+
1

2
·
1

2

=
1

2
.

Therefore the claim holds for n = k , so by induction it holds for all n.

1.8 Binary search

Suppose we are using binary search to find a given number in a sorted list of n numbers.
Show that if n ≤ 2k − 1, then we will need to access at most k elements of the list.

Solution

We will do induction on k .
Base case: if k = 1, we need to search lists of size at most 21 − 1 = 1, which requires
one access to determine if our item is in the list or not.
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Induction step: Assume that all sorted lists of size at most 2k−1 − 1 require accessing
at most k − 1 elements of the list. Given a sorted list of size at most 2k − 1, check
the middle element (or either of the middle two if the list has even length). If this
is the desired element, we are done with one access. If we find something larger
than our desired element, search recursively on all elements to the left of the one
we accessed. Since we looked at the middle element, the left sublist has at most
((2k − 1)− 1)/2 = 2k−1− 1 elements. By our induction hypothesis, we need to access
at most k−1 elements in this sublist, for a total of k elements overall. If we initially find
something smaller than our desired element, repeat the same analysis with all elements
in the right half of the list, with the same result. Therefore we have proved the claim
for all k by induction.

2 Probability

2.1 Coin flips 1

Flip a fair coin until it lands on heads, and let T be the total number of times the coin was
flipped. What is the expected value of T?

(a) 1 (b) 2 (c) e (d) Undefined

Solution

Answer: b.
T is a geometric random variable, and there are many ways to calculate its expecta-
tion. Here is one method that doesn’t involve computing difficult infinite series. Let’s
condition on the result of the first flip. If we get heads, then we’re done right away
and T = 1. If we get tails, then we’re right back where we started and the expected
remaining number of flips is the same as the original expected value of T . In equation
form:

E[T ] = E[T | first flip heads] Pr[first flip heads]

+ E[T | first flip tails] Pr[first flip tails]

= 1 ·
1

2
+ (1 + E[T ]) ·

1

2
.

Solving for E[T ], we find that E[T ] = 2.

2.2 Coin flips 2

Flip n fair coins. Gather any coins that landed on tails and flip them again. Repeat until every
coin has landed on heads. What is the expected total number of coin flips you will complete?

(a) 2n (b) n log n (c) 1
2
n2 (d) Undefined
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Solution

Answer: a.
This question repeats the procedure from the previous question for n independent coins.
Therefore, by linearity of expectation, the total expected number of flips is n·E[T ] = 2n.

2.3 Coin flips 3

Flip a coin until it lands on heads. Starting with $1 on the table, each time the coin lands
on tails, double the amount of money on the table. When you flip heads for the first time,
collect all the money on the table. If it costs $2 to play this game, what is the expected
amount of money you will earn?

(a) −1 (b) 0 (c) 2 (d) Undefined

Solution

Answer: d.
Let’s calculate the expectation in a similar way to Question 2.1. Let X be the expected
winnings, ignoring the $2 cost for now. Since the amount won doubles each round, we
have

E[X] = E[X | first flip heads] Pr[first flip heads]

+ E[X | first flip tails] Pr[first flip tails]

= 1 ·
1

2
+ 2E[X] ·

1

2
.

This equation has no solution, so the expectation is undefined.
Another way to get this result is to consider the expected value won at the kth round of
the game. In order to win money at the kth round, you must flip k−1 tails followed by
one heads, which has a probability of 2−k . If this occurs, you win $2k , so the expected
winnings are 1. Using linearity of expectation to add up the expected winnings across
all rounds, we find that the expected value of X is infinite.

2.4 Conditional expectation

Let X and Y be the results of rolling two standard six-sided dice. What is the expected value
of X given that the sum of the dice is 9?

(a) 3.5 (b) 4 (c) 4.5 (d) 5

Solution

Answer: c.
Solution 1: There are four ordered pairs of dice rolls that sum to 9:
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(3, 6), (4, 5), (5, 4), (6, 3). Each of these is equally likely, so we can calculate the
expected value of the first die by taking the average of the first number in each pair
across all four pairs: (3 + 4 + 5 + 6)/4 = 4.5.
Solution 2: We want to calculate E[X | X + Y = 9]. By linearity of expectation,
9 = E[X + Y | X + Y = 9] = E[X | X + Y = 9] + E[Y | X + Y = 9]. But X and
Y have the same distribution, so E[X | X + Y = 9] = E[Y | X + Y = 9]. Therefore
2E[X | X + Y = 9] = 9, so E[X | X + Y = 9] = 4.5.

2.5 Counting 1

Consider putting three identical balls into 10 numbered bins. Out of all possible configura-
tions, in approximately what fraction is each ball in a different bin?

(a) 0.55 (b) 0.67 (c) 0.72 (d) 0.93

Solution

Answer: a.
Let’s count all possible configurations of balls. There are 10 ways to put all three balls
into the same bin. There are

(
10
2

)
· 2 = 90 ways to put two balls in one bin and one

in another: first choose two bins out of 10, then choose one of those two to have
two balls. There are

(
10
3

)
= 120 ways to put three balls into three different bins: just

choose 3 bins out of 10. This gives a total of 220 possible configurations, 120 of which
have each ball in a different bin, for a fraction of about 0.55.

2.6 Counting 2

Put each of three balls independently into one of 10 bins uniformly at random. What is the
approximate probability that each ball is in a different bin?

(a) 0.55 (b) 0.67 (c) 0.72 (d) 0.93

Solution

Answer: c.
Let’s calculate the probability by conditioning on each ball one at a time. The probability
that all three balls have a valid arrangement is

Pr[all balls valid] = Pr[ball 1 valid] · Pr[ball 2 valid | ball 1 valid]

· Pr[ball 3 valid | balls 1, 2 valid]

= 1 ·
9

10
·
8

10
,

since the first ball can go anywhere, the second can go anywhere except where the first
went, and the third can go in any bin except for two. This gives a probability of 0.72.
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Bonus question: What’s the intuition for why this question and the previous one have
different answers?

2.7 Conditional probability

There are 300 students enrolled in CS161, and on any given day, 5000 people are present on
Stanford campus (including the 300 CS161 students). 10% of students enrolled in CS161
attend lectures in person, and a person on campus who isn’t enrolled in CS161 has a 0.5%
chance of wandering into a lecture anyway. If you see someone attending lecture in person,
what is the probability they are enrolled, rounded to the nearest percent?

(a) 21% (b) 56% (c) 67% (d) 92%

Solution

Answer: b.
First, let’s calculate Pr[attending], the probability that a randomly selected person on
campus attends a CS161 lecture. Using the law of total probability,

Pr[attending] = Pr[attending | enrolled] · Pr[enrolled]

+ Pr[attending | not enrolled] · Pr[not enrolled]

= 0.1 ·
300

5000
+ 0.005 ·

5000− 300
5000

.

Now we apply Bayes’ Rule:

Pr[enrolled | attending] =
Pr[attending | enrolled] · Pr[enrolled]

Pr[attending]

=
0.1 · 300

5000

0.1 · 300
5000
+ 0.005 · 4700

5000

≈ 0.56.

2.8 Random permutation

Pick a uniformly random permutation of the digits 1 to n. What is the expected number
of adjacent pairs of digits such that the first digit in the pair is less than the second? For
example, in the permutation (4, 1, 5, 2, 3), there are two such pairs: 1, 5 and 2, 3.

(a) log n (b) 2
√
n (c) 1

2
(n − 1) (d) 1

2
n

Solution

Answer: c.
We will use linearity of expectation. Define random variables P1, . . . , Pn−1, where Pi = 1
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if the ith digit is less than the (i + 1)th digit, and Pi = 0 otherwise. Then the total
number P of digit pairs in ascending order is equal to

∑n−1
i=1 Pi , and E[P ] =

∑n−1
i=1 E[Pi ].

Now we will show that E[Pi ] = 1
2

for all i . Intuitively, two digits in the permutation are
equally likely to be in ascending or descending order. To make this rigorous, let’s pair
up all possible permutations of n digits by matching each permutation with the one
obtained by reversing the digit order (i.e. replace 1 with n, 2 with n − 1, and so on).
For any adjacent pair of digits, each pair of permutations contains one where that pair
is in ascending order and one where it is in descending order. Therefore exactly half of
all the permutations have the ith digit less than the (i + 1)th digit, so E[Pi ] = 1

2
.

Putting this together, we find that E[P ] =
∑n−1
i=1 E[Pi ] =

1
2
(n − 1).

2.9 Independence

Answer true or false to the following questions about independence. Let A, B, C be events,
and let X, Y be random variables.

1. If A and B are independent, then their complements Ac and Bc are also independent.

Solution

True. We use De Morgan’s laws:

Pr[Ac and Bc ] = Pr[(A or B)c ]

= 1− Pr[A or B]

= 1− Pr[A]− Pr[B] + Pr[A and B]

= 1− Pr[A]− Pr[B] + Pr[A] Pr[B] A and B independent

= (1− Pr[A])(1− Pr[B])
= Pr[Ac ] Pr[Bc ].

2. If A and B are independent, then they are also independent conditioned on any C.

Solution

False. For example, let A and B be the events that two different coin flips are
heads, and let C be the event that both coin flips have the same result. Then A
and B are independent, but conditioning on C makes A completely determined
by B.

3. If A and B are independent conditioned on any C, then they are independent.
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Solution

True. Since A and B are independent conditioned on any C, take C to be the
always-true event.
Bonus question: if A and B are independent conditioned on any C, what else can
you say about A and B?

4. If A and B are independent, and B and C are independent, then A and C are indepen-
dent.

Solution

False. Let A and B be the events that two independent coin flips are heads, and
let C be equal to A. Then A and B are independent, and so are B and C by the
definition of C, but C is completely determined by A.

5. If A and B are independent, and B and C are independent, and A and C are independent,
then A, B, and C are independent.

Solution

False. Let A and B be the events that two independent coin flips are heads, and
let C be the event that both coin flips have the same result. Then A and B are
independent, and each is also independent of C:

Pr[A and C] = Pr[coin 1 = heads and coin 2 = coin 1]

=
1

4
= Pr[A] Pr[C],

and likewise for B. However, A, B, and C are not mutually independent because
A and B completely determine C.

6. If X and Y are independent, then P (X > Y ) = P (Y > X).

Solution

False. Independent random variables do not need to have the same distribution
as each other. For example, take X to be a Bernoulli(1/2) random variable, and
let Y be a Bernoulli(1/2) random variable plus 10.

7. If X and Y are independent, then P (X > 10, Y < 10) = P (X > 10)P (Y < 10).

Solution

True. If X and Y are independent, then all events of the form X ∈ S1 and
Y ∈ S2, where S1 and S2 are setsa, are independent.

aThere are some technical constraints on S1 and S2, but those are well beyond the scope of
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this course.

8. If X and Y are independent, then Var(XY ) = Var(X)Var(Y ).

Solution

False. Let X and Y be two independent Bernoulli(1/2) random variables, so
Var(X) = Var(Y ) = 1

4
. Then XY is a Bernoulli(1/4) random variable, which has

variance Var(XY ) = 1
4
· (1− 1

4
) = 3

16
6= Var(X)Var(Y ).

9. If X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y ).

Solution

True. We’ll use linearity of expectation, plus the fact that if X and Y are inde-
pendent, then E[XY ] = E[X]E[Y ].

Var(X + Y ) = E[(X + Y )2]− (E[X + Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= E[X2] + 2E[X]E[Y ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= E[X2]− E[X]2 + E[Y 2]− E[Y ]2

= Var(X) + Var(Y ).

3 Asymptotic Analysis

3.1

Determine if each function is asymptotically equivalent to n2. All logarithms are base 2.

1. 2n2

Solution

Yes. A general rule is that if two polynomials have the same degree (maximum
power of n), then they are asymptotically equivalent.

2. (n + 1)(n − 2)

Solution

Yes. This is a degree 2 polynomial in n, hence asymptotically equivalent to n2.

3. 2
√
2n
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Solution

No. A useful fact when dealing with functions involving exponents is: if
limn→∞ f (n) = limn→∞ g(n) = ∞ and log f (n) is not O(log g(n)), then f (n)
is not O(g(n)). In this case, log 2

√
2n =

√
2n, which is asymptotically larger than

log n2 = 2 log n.
Proof of fact: Assume log f (n) is not log g(n). Then for all c > 0, there are
infinitely many n such that log f (n) > c · log g(n). Rearranging, f (n) > g(n)c .
Given any constant d > 0, since g(n) → ∞ we can choose a c > 0 such that
g(n)c > d ·g(n) for all n past some point. Putting this all together, we’ve shown
that for any d > 0, f (n) > d · g(n) for infinitely many n, which means that f (n)
is not O(g(n)).

4. log(1 + 2n
2
)

Solution

Yes. While this function is difficult to analyze, we can sandwich it between two
functions that are easier to analyze and are both asymptotically equivalent to n2:

n2 = log(0 + 2n
2

) < log(1 + 2n
2

) < log(2 · 2n2) = n2 + 1.

5. n2 log log n

Solution

No. Even though log log n grows very slowly, it still eventually grows to ∞ and
makes this function asymptotically larger than n2.

6. (n+1)
2(n−3)2
n2+4

Solution

Yes. A general rule is that if two rational functions have the same degree (de-
gree of numerator minus degree of denominator), then they are asymptotically
equivalent. We can prove this using L’Hospital’s rule:

lim
n→∞

(n + 1)2(n − 3)3

n2(n2 + 4)
= lim
n→∞

d
dn
(n + 1)2(n − 3)3
d
dn
n2(n2 + 4)

= [...repeat differentiation...]

= lim
n→∞

24

24
= 1.

Therefore, for large enough n, (n+1)
2(n−3)2
n2+4

= (1 ± ε) · n2 for a constant value of
ε > 0, which shows that this function is asymptotically equivalent to n2. Bonus
question: Convince yourself that the general rule is true, using a similar technique
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to above.

7. n3

n+log n

Solution

Yes. As in question 4, we can sandwich this function between two functions that
are easier to analyze and both asymptotically equivalent to n2:

n2 =
n3

n + 0
>

n3

n + log n
>
n3

n + n
=
1

2
n2.

8.
(
2n+1
2

)
Solution

Yes.
(
2n+1
2

)
= 1
2
(2n + 1)(2n), which is a degree 2 polynomial in n.

9.
∑∞
k=1

nk

2k ·k!

Solution

No. The third term in the sum is n3/48, which is already asymptotically larger
than n2.

3.2

For each pair of functions, is f (n) = O(g(n))?

1. f (n) = n2, g(n) = n log n

Solution

No, because n grows much faster than log n. (We can prove this rigorously using
calculus.) A general rule is that any polynomial in n is asymptotically larger than
any polynomial in log n.

2. f (n) = 43n2 + 228n + 91, g(n) = n2

Solution

Yes. As in the previous problem, these are two polynomials of the same degree,
so f (n) = O(g(n)). (In fact, f (n) = Θ(g(n)).)

3. f (n) = n log n, g(n) = n log log n
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Solution

No. Using L’Hospital’s Rule,

lim
n→∞

n log n

n log log n
= lim
n→∞

log n

log log n
= lim
n→∞

1
n
1
log n
· 1
n

= lim
n→∞
log n =∞.

Therefore n log n is not bounded by any constant multiple of n log log n.

4. f (n) = log(n2 + 2n + 1), g(n) = log n

Solution

Yes. log(n2 + 2n + 1) = log((n + 1)2) = 2 log(n + 1), and then we can use
L’Hospital’s Rule:

lim
n→∞

2 log(n + 1)

log n
= lim
n→∞
2 ·

1
n+1
1
n

= lim
n→∞
2 ·

n

n + 1
= 2.

Therefore, for large enough n, log(n2+2n+1) ≤ (2+ε)·log n, so f (n) = O(g(n)).
Bonus problem: Show that if p(n) is any polynomial in n, then log(p(n)) =
O(log n).

5. f (n) = 3n, g(n) = 2n

Solution

No. Let’s prove this via contradiction. Assume 3n = O(2n). Then there is some
c > 0 such that 3n < c 2̇n for all n ≥ n0. Rearranging, (3/2)n ≤ c for all n ≥ n0.
This cannot be true, since (3/2)n grows arbitrarily large as n increases.

6. f (n) = 2n
1/2
, g(n) = n3

Solution

No. We’ll use the fact from question 3.1, part 3: log f (n) = n1/2, and log g(n) =
3 log n, so log f (n) is not O(log g(n)) because polynomials are asymptotically
larger than logarithms. Therefore f (n) is not O(g(n)) as well.

7. f (n) = n, g(n) = 2
√
log n

Solution

No. Using the same logarithm trick again: log f (n) = log n, and log g(n) =√
log n, and log n is not O(

√
log n).

8. f (n) = (log n)n, g(n) = nlog n
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Solution

No. Using the logarithm trick: log f (n) = n log log n, which is asymptotically
larger than log g(n) = (log n)2, so f (n) is not O(g(n)).
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