
CS 161 (Stanford, Winter 2026) Section 4

1 Warm-up: Binary Search Trees vs Heaps

For each of the following, choose the corresponding data structure. In this problem, “effi-
ciently” means O(log n) time.

1. With this data structure you can efficiently find the element with key value 2025.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

2. With this data structure you can efficiently find the smallest element.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

3. With this data structure you can efficiently find the median element.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

4. This data structure is fast on average, but will be slow in the worst-case.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

For each of the following, choose the corresponding data structure.

1.

2

1

(A) Red-black binary search tree (B) Max-heap (C) Both (D) Neither

2.

1

2

3

8

9 11

19

(A) Red-black binary search tree (B) Min-heap (C) Both (D) Neither

1



3.

8

5

3

11

9 14

19

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

2 Randomly Built BSTs

In this problem, we prove that the average depth of a node in a randomly built binary search
tree with n nodes is O(log n). A randomly built binary search tree with n nodes is one that
arises from inserting the n keys in random order into an initially empty tree, where each of
the n! permutations of the input keys is equally likely. Let d(x, T ) be the depth of node x in
a binary tree T (The depth of the root is 0). Then, the average depth of a node in a binary
tree T with n nodes is

1

n

∑
x∈T

d(x, T ).

1. Let the total path length P (T ) of a binary tree T be defined as the sum of the depths
of all nodes in T , so the average depth of a node in T with n nodes is equal to 1

n
P (T ).

Show that P (T ) = P (TL) + P (TR) + n − 1, where TL and TR are the left and right
subtrees of T , respectively.

2. Let E(n) be the expected total path length of a randomly built binary search tree with
n nodes. Show that E(n) = n − 1 + 1

n

∑n−1
i=0 (E(i) + E(n − i − 1)).

Hint: It may help to think about the n keys being {1, ..., n}, and then expanding out
an expectation as a sum over all the different possible values for the root r(T ).

3. Show that E(n) = O(n log n). You may cite a result previously proven in the context
of other topics covered in class.

Hint: It may help to use E(n) = n − 1 + ET[P (TL)] + ET[P (TR)]

4. Design a sorting algorithm based on randomly building a binary search tree. Show that
its (expected) running time is O(n log n). Assume that a random permutation of n keys
can be generated in time O(n).

2



3 More Sorting!

We are given an unsorted array A with n numbers between 1 and M where M is a large but
constant positive integer. We want to find if there exist two elements of the array that are
within T of one another.

1. Design a simple algorithm that solves this in O(n2).

2. Design a simple algorithm that solves this in O(nlogn).

3. How could you solve this in O(n)? (Hint: modify bucket sort.)

4 Finding Min and Max: A Comparison Lower Bound

In the comparison model, an algorithm can only access the input elements through pairwise
comparisons. A comparison takes two elements a and b and asks “is a < b?”, receiving a
yes/no answer. Given a list of n distinct values, we want to find both the minimum and
maximum elements.

1. Show that n − 1 comparisons are necessary and sufficient to find just the minimum of
n distinct elements.

2. Describe a simple algorithm that finds both the minimum and maximum using at most
2n − 3 comparisons.

3. Describe an algorithm that finds both the minimum and maximum using at most
⌈3n/2⌉ − 2 comparisons.

[Hint: Consider pairing up elements first. ]

4. Prove that any comparison-based algorithm that finds both the minimum and maximum
of n distinct elements must use at least ⌈3n/2⌉ − 2 comparisons in the worst case.

[Hint: Use an adversary argument. For each element, track whether it is still a “potential
minimum” (has never lost a comparison) and whether it is still a “potential maximum”
(has never won a comparison). Count how many of these statuses must be eliminated,
and how many a single comparison can eliminate. ]

5. Conclude that the exact worst-case complexity of finding both min and max is ⌈3n/2⌉−2
comparisons.

3


	Warm-up: Binary Search Trees vs Heaps
	Randomly Built BSTs
	More Sorting!
	Finding Min and Max: A Comparison Lower Bound

