CS 161 (Stanford, Winter 2026) Section 4

1 Warm-up: Binary Search Trees vs Heaps

For each of the following, choose the corresponding data structure. In this problem, “effi-
ciently” means O(log n) time.

1. With this data structure you can efficiently find the element with key value 2025.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither
2. With this data structure you can efficiently find the smallest element.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither
3. With this data structure you can efficiently find the median element.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither
4. This data structure is fast on average, but will be slow in the worst-case.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

For each of the following, choose the corresponding data structure.

1.

(A) Red-black binary search tree (B) Max-heap (C) Both (D) Neither

(A) Red-black binary search tree (B) Min-heap (C) Both (D) Neither

1



(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

2 Randomly Built BSTs

In this problem, we prove that the average depth of a node in a randomly built binary search
tree with n nodes is O(logn). A randomly built binary search tree with n nodes is one that
arises from inserting the n keys in random order into an initially empty tree, where each of
the n! permutations of the input keys is equally likely. Let d(x, T) be the depth of node x in
a binary tree T (The depth of the root is 0). Then, the average depth of a node in a binary

tree T with n nodes is 1
- > d(x,T).

xeT

1. Let the total path length P(T) of a binary tree T be defined as the sum of the depths
of all nodes in T, so the average depth of a node in T with n nodes is equal to £P(T).
Show that P(T) = P(T.) + P(Tg) + n— 1, where T, and Tk are the left and right
subtrees of T, respectively.

2. Let E(n) be the expected total path length of a randomly built binary search tree with
n nodes. Show that E(n) =n—1+ LS H(EG) + E(n—i—1)).

Hint: It may help to think about the n keys being {1, ..., n}, and then expanding out
an expectation as a sum over all the different possible values for the root r(T).

3. Show that E(n) = O(nlogn). You may cite a result previously proven in the context
of other topics covered in class.

Hint: It may help to use E(n) = n— 1+ E¢[P(T,)] + Er[P(Tg)]

4. Design a sorting algorithm based on randomly building a binary search tree. Show that
its (expected) running time is O(nlog n). Assume that a random permutation of n keys
can be generated in time O(n).



3 More Sorting!

We are given an unsorted array A with n numbers between 1 and M where M is a large but
constant positive integer. We want to find if there exist two elements of the array that are
within T of one another.

1. Design a simple algorithm that solves this in O(n?).
2. Design a simple algorithm that solves this in O(nlogn).

3. How could you solve this in O(n)? (Hint: modify bucket sort.)

4 Finding Min and Max: A Comparison Lower Bound

In the comparison model, an algorithm can only access the input elements through pairwise
comparisons. A comparison takes two elements a and b and asks “is a < b?", receiving a
yes/no answer. Given a list of n distinct values, we want to find both the minimum and
maximum elements.

1. Show that n — 1 comparisons are necessary and sufficient to find just the minimum of
n distinct elements.

2. Describe a simple algorithm that finds both the minimum and maximum using at most
2n — 3 comparisons.

3. Describe an algorithm that finds both the minimum and maximum using at most
[3n/2] — 2 comparisons.

[Hint: Consider pairing up elements first. |

4. Prove that any comparison-based algorithm that finds both the minimum and maximum
of n distinct elements must use at least [3n/2] — 2 comparisons in the worst case.

[Hint: Use an adversary argument. For each element, track whether it is still a “potential
minimum” (has never lost a comparison) and whether it is still a “potential maximum"”
(has never won a comparison). Count how many of these statuses must be eliminated,
and how many a single comparison can eliminate. ]

5. Conclude that the exact worst-case complexity of finding both min and max s [3n/2]—2
comparisons.



	Warm-up: Binary Search Trees vs Heaps
	Randomly Built BSTs
	More Sorting!
	Finding Min and Max: A Comparison Lower Bound

